Description: This lemma proves that, given an appropriate K (in another theorem we prove such a K exists), there exists a function q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91 ( at the top of page 91): 0 <= q_n <= 1 , q_n < ε on T \ U, and q_n > 1 - ε on V . We use y to represent the final q_n in the paper (the one with n large enough), N to represent n in the paper, K to represent k , D to represent δ, E to represent ε, and P to represent p . (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem45.1 | |
|
stoweidlem45.2 | |
||
stoweidlem45.3 | |
||
stoweidlem45.4 | |
||
stoweidlem45.5 | |
||
stoweidlem45.6 | |
||
stoweidlem45.7 | |
||
stoweidlem45.8 | |
||
stoweidlem45.9 | |
||
stoweidlem45.10 | |
||
stoweidlem45.11 | |
||
stoweidlem45.12 | |
||
stoweidlem45.13 | |
||
stoweidlem45.14 | |
||
stoweidlem45.15 | |
||
stoweidlem45.16 | |
||
stoweidlem45.17 | |
||
stoweidlem45.18 | |
||
stoweidlem45.19 | |
||
Assertion | stoweidlem45 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem45.1 | |
|
2 | stoweidlem45.2 | |
|
3 | stoweidlem45.3 | |
|
4 | stoweidlem45.4 | |
|
5 | stoweidlem45.5 | |
|
6 | stoweidlem45.6 | |
|
7 | stoweidlem45.7 | |
|
8 | stoweidlem45.8 | |
|
9 | stoweidlem45.9 | |
|
10 | stoweidlem45.10 | |
|
11 | stoweidlem45.11 | |
|
12 | stoweidlem45.12 | |
|
13 | stoweidlem45.13 | |
|
14 | stoweidlem45.14 | |
|
15 | stoweidlem45.15 | |
|
16 | stoweidlem45.16 | |
|
17 | stoweidlem45.17 | |
|
18 | stoweidlem45.18 | |
|
19 | stoweidlem45.19 | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 5 | nnnn0d | |
24 | 6 23 | nnexpcld | |
25 | 1 2 4 20 21 22 9 10 13 14 15 16 5 24 | stoweidlem40 | |
26 | 1red | |
|
27 | 10 | ffvelcdmda | |
28 | 23 | adantr | |
29 | 27 28 | reexpcld | |
30 | 26 29 | resubcld | |
31 | 6 | nnnn0d | |
32 | 31 23 | nn0expcld | |
33 | 32 | adantr | |
34 | 1m1e0 | |
|
35 | 11 | r19.21bi | |
36 | 35 | simpld | |
37 | 35 | simprd | |
38 | exple1 | |
|
39 | 27 36 37 28 38 | syl31anc | |
40 | 29 26 26 39 | lesub2dd | |
41 | 34 40 | eqbrtrrid | |
42 | 30 33 41 | expge0d | |
43 | 4 10 23 31 | stoweidlem12 | |
44 | 42 43 | breqtrrd | |
45 | 0red | |
|
46 | 27 28 36 | expge0d | |
47 | 45 29 26 46 | lesub2dd | |
48 | 1m0e1 | |
|
49 | 47 48 | breqtrdi | |
50 | exple1 | |
|
51 | 30 41 49 33 50 | syl31anc | |
52 | 43 51 | eqbrtrd | |
53 | 44 52 | jca | |
54 | 53 | ex | |
55 | 2 54 | ralrimi | |
56 | 3 4 10 23 31 7 17 18 11 | stoweidlem24 | |
57 | 56 | ex | |
58 | 2 57 | ralrimi | |
59 | 4 5 6 7 10 11 12 17 19 | stoweidlem25 | |
60 | 59 | ex | |
61 | 2 60 | ralrimi | |
62 | nfmpt1 | |
|
63 | 4 62 | nfcxfr | |
64 | 63 | nfeq2 | |
65 | fveq1 | |
|
66 | 65 | breq2d | |
67 | 65 | breq1d | |
68 | 66 67 | anbi12d | |
69 | 64 68 | ralbid | |
70 | 65 | breq2d | |
71 | 64 70 | ralbid | |
72 | 65 | breq1d | |
73 | 64 72 | ralbid | |
74 | 69 71 73 | 3anbi123d | |
75 | 74 | rspcev | |
76 | 25 55 58 61 75 | syl13anc | |