Metamath Proof Explorer


Theorem stoweidlem45

Description: This lemma proves that, given an appropriate K (in another theorem we prove such a K exists), there exists a function q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91 ( at the top of page 91): 0 <= q_n <= 1 , q_n < ε on T \ U, and q_n > 1 - ε on V . We use y to represent the final q_n in the paper (the one with n large enough), N to represent n in the paper, K to represent k , D to represent δ, E to represent ε, and P to represent p . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem45.1 _tP
stoweidlem45.2 tφ
stoweidlem45.3 V=tT|Pt<D2
stoweidlem45.4 Q=tT1PtNKN
stoweidlem45.5 φN
stoweidlem45.6 φK
stoweidlem45.7 φD+
stoweidlem45.8 φD<1
stoweidlem45.9 φPA
stoweidlem45.10 φP:T
stoweidlem45.11 φtT0PtPt1
stoweidlem45.12 φtTUDPt
stoweidlem45.13 φfAf:T
stoweidlem45.14 φfAgAtTft+gtA
stoweidlem45.15 φfAgAtTftgtA
stoweidlem45.16 φxtTxA
stoweidlem45.17 φE+
stoweidlem45.18 φ1E<1KD2N
stoweidlem45.19 φ1KDN<E
Assertion stoweidlem45 φyAtT0ytyt1tV1E<yttTUyt<E

Proof

Step Hyp Ref Expression
1 stoweidlem45.1 _tP
2 stoweidlem45.2 tφ
3 stoweidlem45.3 V=tT|Pt<D2
4 stoweidlem45.4 Q=tT1PtNKN
5 stoweidlem45.5 φN
6 stoweidlem45.6 φK
7 stoweidlem45.7 φD+
8 stoweidlem45.8 φD<1
9 stoweidlem45.9 φPA
10 stoweidlem45.10 φP:T
11 stoweidlem45.11 φtT0PtPt1
12 stoweidlem45.12 φtTUDPt
13 stoweidlem45.13 φfAf:T
14 stoweidlem45.14 φfAgAtTft+gtA
15 stoweidlem45.15 φfAgAtTftgtA
16 stoweidlem45.16 φxtTxA
17 stoweidlem45.17 φE+
18 stoweidlem45.18 φ1E<1KD2N
19 stoweidlem45.19 φ1KDN<E
20 eqid tT1PtN=tT1PtN
21 eqid tT1=tT1
22 eqid tTPtN=tTPtN
23 5 nnnn0d φN0
24 6 23 nnexpcld φKN
25 1 2 4 20 21 22 9 10 13 14 15 16 5 24 stoweidlem40 φQA
26 1red φtT1
27 10 ffvelcdmda φtTPt
28 23 adantr φtTN0
29 27 28 reexpcld φtTPtN
30 26 29 resubcld φtT1PtN
31 6 nnnn0d φK0
32 31 23 nn0expcld φKN0
33 32 adantr φtTKN0
34 1m1e0 11=0
35 11 r19.21bi φtT0PtPt1
36 35 simpld φtT0Pt
37 35 simprd φtTPt1
38 exple1 Pt0PtPt1N0PtN1
39 27 36 37 28 38 syl31anc φtTPtN1
40 29 26 26 39 lesub2dd φtT111PtN
41 34 40 eqbrtrrid φtT01PtN
42 30 33 41 expge0d φtT01PtNKN
43 4 10 23 31 stoweidlem12 φtTQt=1PtNKN
44 42 43 breqtrrd φtT0Qt
45 0red φtT0
46 27 28 36 expge0d φtT0PtN
47 45 29 26 46 lesub2dd φtT1PtN10
48 1m0e1 10=1
49 47 48 breqtrdi φtT1PtN1
50 exple1 1PtN01PtN1PtN1KN01PtNKN1
51 30 41 49 33 50 syl31anc φtT1PtNKN1
52 43 51 eqbrtrd φtTQt1
53 44 52 jca φtT0QtQt1
54 53 ex φtT0QtQt1
55 2 54 ralrimi φtT0QtQt1
56 3 4 10 23 31 7 17 18 11 stoweidlem24 φtV1E<Qt
57 56 ex φtV1E<Qt
58 2 57 ralrimi φtV1E<Qt
59 4 5 6 7 10 11 12 17 19 stoweidlem25 φtTUQt<E
60 59 ex φtTUQt<E
61 2 60 ralrimi φtTUQt<E
62 nfmpt1 _ttT1PtNKN
63 4 62 nfcxfr _tQ
64 63 nfeq2 ty=Q
65 fveq1 y=Qyt=Qt
66 65 breq2d y=Q0yt0Qt
67 65 breq1d y=Qyt1Qt1
68 66 67 anbi12d y=Q0ytyt10QtQt1
69 64 68 ralbid y=QtT0ytyt1tT0QtQt1
70 65 breq2d y=Q1E<yt1E<Qt
71 64 70 ralbid y=QtV1E<yttV1E<Qt
72 65 breq1d y=Qyt<EQt<E
73 64 72 ralbid y=QtTUyt<EtTUQt<E
74 69 71 73 3anbi123d y=QtT0ytyt1tV1E<yttTUyt<EtT0QtQt1tV1E<QttTUQt<E
75 74 rspcev QAtT0QtQt1tV1E<QttTUQt<EyAtT0ytyt1tV1E<yttTUyt<E
76 25 55 58 61 75 syl13anc φyAtT0ytyt1tV1E<yttTUyt<E