Metamath Proof Explorer


Theorem stoweidlem55

Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t_0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem55.1 _tU
stoweidlem55.2 tφ
stoweidlem55.3 K=topGenran.
stoweidlem55.4 φJComp
stoweidlem55.5 T=J
stoweidlem55.6 C=JCnK
stoweidlem55.7 φAC
stoweidlem55.8 φfAgAtTft+gtA
stoweidlem55.9 φfAgAtTftgtA
stoweidlem55.10 φxtTxA
stoweidlem55.11 φrTtTrtqAqrqt
stoweidlem55.12 φUJ
stoweidlem55.13 φZU
stoweidlem55.14 Q=hA|hZ=0tT0htht1
stoweidlem55.15 W=wJ|hQw=tT|0<ht
Assertion stoweidlem55 φpAtT0ptpt1pZ=0tTU0<pt

Proof

Step Hyp Ref Expression
1 stoweidlem55.1 _tU
2 stoweidlem55.2 tφ
3 stoweidlem55.3 K=topGenran.
4 stoweidlem55.4 φJComp
5 stoweidlem55.5 T=J
6 stoweidlem55.6 C=JCnK
7 stoweidlem55.7 φAC
8 stoweidlem55.8 φfAgAtTft+gtA
9 stoweidlem55.9 φfAgAtTftgtA
10 stoweidlem55.10 φxtTxA
11 stoweidlem55.11 φrTtTrtqAqrqt
12 stoweidlem55.12 φUJ
13 stoweidlem55.13 φZU
14 stoweidlem55.14 Q=hA|hZ=0tT0htht1
15 stoweidlem55.15 W=wJ|hQw=tT|0<ht
16 0re 0
17 10 stoweidlem4 φ0tT0A
18 16 17 mpan2 φtT0A
19 18 adantr φTU=tT0A
20 nfcv _tT
21 20 1 nfdif _tTU
22 nfcv _t
23 21 22 nfeq tTU=
24 2 23 nfan tφTU=
25 0le0 00
26 0cn 0
27 eqid tT0=tT0
28 27 fvmpt2 tT0tT0t=0
29 26 28 mpan2 tTtT0t=0
30 25 29 breqtrrid tT0tT0t
31 30 adantl φTU=tT0tT0t
32 0le1 01
33 29 32 eqbrtrdi tTtT0t1
34 33 adantl φTU=tTtT0t1
35 31 34 jca φTU=tT0tT0ttT0t1
36 35 ex φTU=tT0tT0ttT0t1
37 24 36 ralrimi φTU=tT0tT0ttT0t1
38 13 12 jca φZUUJ
39 elunii ZUUJZJ
40 39 5 eleqtrrdi ZUUJZT
41 eqidd t=Z0=0
42 c0ex 0V
43 41 27 42 fvmpt ZTtT0Z=0
44 38 40 43 3syl φtT0Z=0
45 44 adantr φTU=tT0Z=0
46 23 rzalf TU=tTU0<tT0t
47 46 adantl φTU=tTU0<tT0t
48 nfcv _tp
49 nfmpt1 _ttT0
50 48 49 nfeq tp=tT0
51 fveq1 p=tT0pt=tT0t
52 51 breq2d p=tT00pt0tT0t
53 51 breq1d p=tT0pt1tT0t1
54 52 53 anbi12d p=tT00ptpt10tT0ttT0t1
55 50 54 ralbid p=tT0tT0ptpt1tT0tT0ttT0t1
56 fveq1 p=tT0pZ=tT0Z
57 56 eqeq1d p=tT0pZ=0tT0Z=0
58 51 breq2d p=tT00<pt0<tT0t
59 50 58 ralbid p=tT0tTU0<pttTU0<tT0t
60 55 57 59 3anbi123d p=tT0tT0ptpt1pZ=0tTU0<pttT0tT0ttT0t1tT0Z=0tTU0<tT0t
61 60 rspcev tT0AtT0tT0ttT0t1tT0Z=0tTU0<tT0tpAtT0ptpt1pZ=0tTU0<pt
62 19 37 45 47 61 syl13anc φTU=pAtT0ptpt1pZ=0tTU0<pt
63 23 nfn t¬TU=
64 2 63 nfan tφ¬TU=
65 4 adantr φ¬TU=JComp
66 7 adantr φ¬TU=AC
67 8 3adant1r φ¬TU=fAgAtTft+gtA
68 9 3adant1r φ¬TU=fAgAtTftgtA
69 10 adantlr φ¬TU=xtTxA
70 11 adantlr φ¬TU=rTtTrtqAqrqt
71 12 adantr φ¬TU=UJ
72 neqne ¬TU=TU
73 72 adantl φ¬TU=TU
74 13 adantr φ¬TU=ZU
75 1 64 3 14 15 5 6 65 66 67 68 69 70 71 73 74 stoweidlem53 φ¬TU=pAtT0ptpt1pZ=0tTU0<pt
76 62 75 pm2.61dan φpAtT0ptpt1pZ=0tTU0<pt