Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t_0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem55.1 | |
|
stoweidlem55.2 | |
||
stoweidlem55.3 | |
||
stoweidlem55.4 | |
||
stoweidlem55.5 | |
||
stoweidlem55.6 | |
||
stoweidlem55.7 | |
||
stoweidlem55.8 | |
||
stoweidlem55.9 | |
||
stoweidlem55.10 | |
||
stoweidlem55.11 | |
||
stoweidlem55.12 | |
||
stoweidlem55.13 | |
||
stoweidlem55.14 | |
||
stoweidlem55.15 | |
||
Assertion | stoweidlem55 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem55.1 | |
|
2 | stoweidlem55.2 | |
|
3 | stoweidlem55.3 | |
|
4 | stoweidlem55.4 | |
|
5 | stoweidlem55.5 | |
|
6 | stoweidlem55.6 | |
|
7 | stoweidlem55.7 | |
|
8 | stoweidlem55.8 | |
|
9 | stoweidlem55.9 | |
|
10 | stoweidlem55.10 | |
|
11 | stoweidlem55.11 | |
|
12 | stoweidlem55.12 | |
|
13 | stoweidlem55.13 | |
|
14 | stoweidlem55.14 | |
|
15 | stoweidlem55.15 | |
|
16 | 0re | |
|
17 | 10 | stoweidlem4 | |
18 | 16 17 | mpan2 | |
19 | 18 | adantr | |
20 | nfcv | |
|
21 | 20 1 | nfdif | |
22 | nfcv | |
|
23 | 21 22 | nfeq | |
24 | 2 23 | nfan | |
25 | 0le0 | |
|
26 | 0cn | |
|
27 | eqid | |
|
28 | 27 | fvmpt2 | |
29 | 26 28 | mpan2 | |
30 | 25 29 | breqtrrid | |
31 | 30 | adantl | |
32 | 0le1 | |
|
33 | 29 32 | eqbrtrdi | |
34 | 33 | adantl | |
35 | 31 34 | jca | |
36 | 35 | ex | |
37 | 24 36 | ralrimi | |
38 | 13 12 | jca | |
39 | elunii | |
|
40 | 39 5 | eleqtrrdi | |
41 | eqidd | |
|
42 | c0ex | |
|
43 | 41 27 42 | fvmpt | |
44 | 38 40 43 | 3syl | |
45 | 44 | adantr | |
46 | 23 | rzalf | |
47 | 46 | adantl | |
48 | nfcv | |
|
49 | nfmpt1 | |
|
50 | 48 49 | nfeq | |
51 | fveq1 | |
|
52 | 51 | breq2d | |
53 | 51 | breq1d | |
54 | 52 53 | anbi12d | |
55 | 50 54 | ralbid | |
56 | fveq1 | |
|
57 | 56 | eqeq1d | |
58 | 51 | breq2d | |
59 | 50 58 | ralbid | |
60 | 55 57 59 | 3anbi123d | |
61 | 60 | rspcev | |
62 | 19 37 45 47 61 | syl13anc | |
63 | 23 | nfn | |
64 | 2 63 | nfan | |
65 | 4 | adantr | |
66 | 7 | adantr | |
67 | 8 | 3adant1r | |
68 | 9 | 3adant1r | |
69 | 10 | adantlr | |
70 | 11 | adantlr | |
71 | 12 | adantr | |
72 | neqne | |
|
73 | 72 | adantl | |
74 | 13 | adantr | |
75 | 1 64 3 14 15 5 6 65 66 67 68 69 70 71 73 74 | stoweidlem53 | |
76 | 62 75 | pm2.61dan | |