Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subsubc.d | |
|
Assertion | subsubc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsubc.d | |
|
2 | id | |
|
3 | eqid | |
|
4 | 2 3 | subcssc | |
5 | eqid | |
|
6 | subcrcl | |
|
7 | id | |
|
8 | eqidd | |
|
9 | 7 8 | subcfn | |
10 | 7 9 5 | subcss1 | |
11 | 1 5 6 9 10 | reschomf | |
12 | 11 | breq2d | |
13 | 4 12 | imbitrrid | |
14 | 13 | pm4.71rd | |
15 | simpr | |
|
16 | simpl | |
|
17 | eqid | |
|
18 | 16 17 | subcssc | |
19 | ssctr | |
|
20 | 15 18 19 | syl2anc | |
21 | 12 | biimpa | |
22 | 20 21 | 2thd | |
23 | 16 | adantr | |
24 | 9 | adantr | |
25 | 24 | adantr | |
26 | eqid | |
|
27 | eqidd | |
|
28 | 15 27 | sscfn1 | |
29 | 28 24 15 | ssc1 | |
30 | 29 | sselda | |
31 | 1 23 25 26 30 | subcid | |
32 | 31 | eleq1d | |
33 | 32 | ralbidva | |
34 | 1 | oveq1i | |
35 | 6 | adantr | |
36 | dmexg | |
|
37 | 36 | dmexd | |
38 | 37 | adantr | |
39 | 35 24 28 38 29 | rescabs | |
40 | 34 39 | eqtr2id | |
41 | 40 | eleq1d | |
42 | 22 33 41 | 3anbi123d | |
43 | eqid | |
|
44 | 17 26 43 35 28 | issubc3 | |
45 | eqid | |
|
46 | eqid | |
|
47 | 1 7 | subccat | |
48 | 47 | adantr | |
49 | 3 45 46 48 28 | issubc3 | |
50 | 42 44 49 | 3bitr4rd | |
51 | 50 | pm5.32da | |
52 | 14 51 | bitrd | |
53 | 52 | biancomd | |