Metamath Proof Explorer


Theorem subsubc

Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypothesis subsubc.d D=CcatH
Assertion subsubc HSubcatCJSubcatDJSubcatCJcatH

Proof

Step Hyp Ref Expression
1 subsubc.d D=CcatH
2 id JSubcatDJSubcatD
3 eqid Hom𝑓D=Hom𝑓D
4 2 3 subcssc JSubcatDJcatHom𝑓D
5 eqid BaseC=BaseC
6 subcrcl HSubcatCCCat
7 id HSubcatCHSubcatC
8 eqidd HSubcatCdomdomH=domdomH
9 7 8 subcfn HSubcatCHFndomdomH×domdomH
10 7 9 5 subcss1 HSubcatCdomdomHBaseC
11 1 5 6 9 10 reschomf HSubcatCH=Hom𝑓D
12 11 breq2d HSubcatCJcatHJcatHom𝑓D
13 4 12 imbitrrid HSubcatCJSubcatDJcatH
14 13 pm4.71rd HSubcatCJSubcatDJcatHJSubcatD
15 simpr HSubcatCJcatHJcatH
16 simpl HSubcatCJcatHHSubcatC
17 eqid Hom𝑓C=Hom𝑓C
18 16 17 subcssc HSubcatCJcatHHcatHom𝑓C
19 ssctr JcatHHcatHom𝑓CJcatHom𝑓C
20 15 18 19 syl2anc HSubcatCJcatHJcatHom𝑓C
21 12 biimpa HSubcatCJcatHJcatHom𝑓D
22 20 21 2thd HSubcatCJcatHJcatHom𝑓CJcatHom𝑓D
23 16 adantr HSubcatCJcatHxdomdomJHSubcatC
24 9 adantr HSubcatCJcatHHFndomdomH×domdomH
25 24 adantr HSubcatCJcatHxdomdomJHFndomdomH×domdomH
26 eqid IdC=IdC
27 eqidd HSubcatCJcatHdomdomJ=domdomJ
28 15 27 sscfn1 HSubcatCJcatHJFndomdomJ×domdomJ
29 28 24 15 ssc1 HSubcatCJcatHdomdomJdomdomH
30 29 sselda HSubcatCJcatHxdomdomJxdomdomH
31 1 23 25 26 30 subcid HSubcatCJcatHxdomdomJIdCx=IdDx
32 31 eleq1d HSubcatCJcatHxdomdomJIdCxxJxIdDxxJx
33 32 ralbidva HSubcatCJcatHxdomdomJIdCxxJxxdomdomJIdDxxJx
34 1 oveq1i DcatJ=CcatHcatJ
35 6 adantr HSubcatCJcatHCCat
36 dmexg HSubcatCdomHV
37 36 dmexd HSubcatCdomdomHV
38 37 adantr HSubcatCJcatHdomdomHV
39 35 24 28 38 29 rescabs HSubcatCJcatHCcatHcatJ=CcatJ
40 34 39 eqtr2id HSubcatCJcatHCcatJ=DcatJ
41 40 eleq1d HSubcatCJcatHCcatJCatDcatJCat
42 22 33 41 3anbi123d HSubcatCJcatHJcatHom𝑓CxdomdomJIdCxxJxCcatJCatJcatHom𝑓DxdomdomJIdDxxJxDcatJCat
43 eqid CcatJ=CcatJ
44 17 26 43 35 28 issubc3 HSubcatCJcatHJSubcatCJcatHom𝑓CxdomdomJIdCxxJxCcatJCat
45 eqid IdD=IdD
46 eqid DcatJ=DcatJ
47 1 7 subccat HSubcatCDCat
48 47 adantr HSubcatCJcatHDCat
49 3 45 46 48 28 issubc3 HSubcatCJcatHJSubcatDJcatHom𝑓DxdomdomJIdDxxJxDcatJCat
50 42 44 49 3bitr4rd HSubcatCJcatHJSubcatDJSubcatC
51 50 pm5.32da HSubcatCJcatHJSubcatDJcatHJSubcatC
52 14 51 bitrd HSubcatCJSubcatDJcatHJSubcatC
53 52 biancomd HSubcatCJSubcatDJSubcatCJcatH