Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sumz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | simpr | |
|
3 | simpl | |
|
4 | c0ex | |
|
5 | 4 | fvconst2 | |
6 | ifid | |
|
7 | 5 6 | eqtr4di | |
8 | 7 | adantl | |
9 | 0cnd | |
|
10 | 1 2 3 8 9 | zsum | |
11 | fclim | |
|
12 | ffun | |
|
13 | 11 12 | ax-mp | |
14 | serclim0 | |
|
15 | 14 | adantl | |
16 | funbrfv | |
|
17 | 13 15 16 | mpsyl | |
18 | 10 17 | eqtrd | |
19 | uzf | |
|
20 | 19 | fdmi | |
21 | 20 | eleq2i | |
22 | ndmfv | |
|
23 | 21 22 | sylnbir | |
24 | 23 | sseq2d | |
25 | 24 | biimpac | |
26 | ss0 | |
|
27 | sumeq1 | |
|
28 | sum0 | |
|
29 | 27 28 | eqtrdi | |
30 | 25 26 29 | 3syl | |
31 | 18 30 | pm2.61dan | |
32 | fz1f1o | |
|
33 | eqidd | |
|
34 | simpl | |
|
35 | simpr | |
|
36 | 0cnd | |
|
37 | elfznn | |
|
38 | 4 | fvconst2 | |
39 | 37 38 | syl | |
40 | 39 | adantl | |
41 | 33 34 35 36 40 | fsum | |
42 | nnuz | |
|
43 | 42 | ser0 | |
44 | 43 | adantr | |
45 | 41 44 | eqtrd | |
46 | 45 | ex | |
47 | 46 | exlimdv | |
48 | 47 | imp | |
49 | 29 48 | jaoi | |
50 | 32 49 | syl | |
51 | 31 50 | jaoi | |