| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 |  | simpr |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 |  | c0ex |  | 
						
							| 5 | 4 | fvconst2 |  | 
						
							| 6 |  | ifid |  | 
						
							| 7 | 5 6 | eqtr4di |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | 0cnd |  | 
						
							| 10 | 1 2 3 8 9 | zsum |  | 
						
							| 11 |  | fclim |  | 
						
							| 12 |  | ffun |  | 
						
							| 13 | 11 12 | ax-mp |  | 
						
							| 14 |  | serclim0 |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | funbrfv |  | 
						
							| 17 | 13 15 16 | mpsyl |  | 
						
							| 18 | 10 17 | eqtrd |  | 
						
							| 19 |  | uzf |  | 
						
							| 20 | 19 | fdmi |  | 
						
							| 21 | 20 | eleq2i |  | 
						
							| 22 |  | ndmfv |  | 
						
							| 23 | 21 22 | sylnbir |  | 
						
							| 24 | 23 | sseq2d |  | 
						
							| 25 | 24 | biimpac |  | 
						
							| 26 |  | ss0 |  | 
						
							| 27 |  | sumeq1 |  | 
						
							| 28 |  | sum0 |  | 
						
							| 29 | 27 28 | eqtrdi |  | 
						
							| 30 | 25 26 29 | 3syl |  | 
						
							| 31 | 18 30 | pm2.61dan |  | 
						
							| 32 |  | fz1f1o |  | 
						
							| 33 |  | eqidd |  | 
						
							| 34 |  | simpl |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | 0cnd |  | 
						
							| 37 |  | elfznn |  | 
						
							| 38 | 4 | fvconst2 |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 | 33 34 35 36 40 | fsum |  | 
						
							| 42 |  | nnuz |  | 
						
							| 43 | 42 | ser0 |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 41 44 | eqtrd |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 46 | exlimdv |  | 
						
							| 48 | 47 | imp |  | 
						
							| 49 | 29 48 | jaoi |  | 
						
							| 50 | 32 49 | syl |  | 
						
							| 51 | 31 50 | jaoi |  |