Metamath Proof Explorer


Theorem sumz

Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)

Ref Expression
Assertion sumz AMAFinkA0=0

Proof

Step Hyp Ref Expression
1 eqid M=M
2 simpr AMMM
3 simpl AMMAM
4 c0ex 0V
5 4 fvconst2 kMM×0k=0
6 ifid ifkA00=0
7 5 6 eqtr4di kMM×0k=ifkA00
8 7 adantl AMMkMM×0k=ifkA00
9 0cnd AMMkA0
10 1 2 3 8 9 zsum AMMkA0=seqM+M×0
11 fclim :dom
12 ffun :domFun
13 11 12 ax-mp Fun
14 serclim0 MseqM+M×00
15 14 adantl AMMseqM+M×00
16 funbrfv FunseqM+M×00seqM+M×0=0
17 13 15 16 mpsyl AMMseqM+M×0=0
18 10 17 eqtrd AMMkA0=0
19 uzf :𝒫
20 19 fdmi dom=
21 20 eleq2i MdomM
22 ndmfv ¬MdomM=
23 21 22 sylnbir ¬MM=
24 23 sseq2d ¬MAMA
25 24 biimpac AM¬MA
26 ss0 AA=
27 sumeq1 A=kA0=k0
28 sum0 k0=0
29 27 28 eqtrdi A=kA0=0
30 25 26 29 3syl AM¬MkA0=0
31 18 30 pm2.61dan AMkA0=0
32 fz1f1o AFinA=Aff:1A1-1 ontoA
33 eqidd k=fn0=0
34 simpl Af:1A1-1 ontoAA
35 simpr Af:1A1-1 ontoAf:1A1-1 ontoA
36 0cnd Af:1A1-1 ontoAkA0
37 elfznn n1An
38 4 fvconst2 n×0n=0
39 37 38 syl n1A×0n=0
40 39 adantl Af:1A1-1 ontoAn1A×0n=0
41 33 34 35 36 40 fsum Af:1A1-1 ontoAkA0=seq1+×0A
42 nnuz =1
43 42 ser0 Aseq1+×0A=0
44 43 adantr Af:1A1-1 ontoAseq1+×0A=0
45 41 44 eqtrd Af:1A1-1 ontoAkA0=0
46 45 ex Af:1A1-1 ontoAkA0=0
47 46 exlimdv Aff:1A1-1 ontoAkA0=0
48 47 imp Aff:1A1-1 ontoAkA0=0
49 29 48 jaoi A=Aff:1A1-1 ontoAkA0=0
50 32 49 syl AFinkA0=0
51 31 50 jaoi AMAFinkA0=0