Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrunb1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |
|
2 | pnfnlt | |
|
3 | 1 2 | syl6 | |
4 | 3 | ralrimiv | |
5 | 4 | adantr | |
6 | peano2re | |
|
7 | breq1 | |
|
8 | 7 | rexbidv | |
9 | 8 | rspcva | |
10 | 9 | adantrr | |
11 | 10 | ancoms | |
12 | 6 11 | sylan2 | |
13 | ssel2 | |
|
14 | ltp1 | |
|
15 | 14 | adantr | |
16 | 6 | ancli | |
17 | rexr | |
|
18 | rexr | |
|
19 | xrltletr | |
|
20 | 18 19 | syl3an2 | |
21 | 17 20 | syl3an1 | |
22 | 21 | 3expa | |
23 | 16 22 | sylan | |
24 | 15 23 | mpand | |
25 | 24 | ancoms | |
26 | 13 25 | sylan | |
27 | 26 | an32s | |
28 | 27 | reximdva | |
29 | 28 | adantll | |
30 | 12 29 | mpd | |
31 | 30 | exp31 | |
32 | 31 | a1dd | |
33 | 32 | com4r | |
34 | 33 | com13 | |
35 | 34 | imp | |
36 | 35 | ralrimiv | |
37 | 5 36 | jca | |
38 | pnfxr | |
|
39 | supxr | |
|
40 | 38 39 | mpanl2 | |
41 | 37 40 | syldan | |
42 | 41 | ex | |
43 | rexr | |
|
44 | 43 | ad2antlr | |
45 | ltpnf | |
|
46 | breq2 | |
|
47 | 45 46 | imbitrrid | |
48 | 47 | impcom | |
49 | 48 | adantll | |
50 | xrltso | |
|
51 | 50 | a1i | |
52 | xrsupss | |
|
53 | 52 | ad2antrr | |
54 | 51 53 | suplub | |
55 | 44 49 54 | mp2and | |
56 | 55 | ex | |
57 | 43 | ad2antlr | |
58 | 13 | adantlr | |
59 | xrltle | |
|
60 | 57 58 59 | syl2anc | |
61 | 60 | reximdva | |
62 | 56 61 | syld | |
63 | 62 | ralrimdva | |
64 | 42 63 | impbid | |