Metamath Proof Explorer


Theorem supxrunb1

Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrunb1 A*xyAxysupA*<=+∞

Proof

Step Hyp Ref Expression
1 ssel A*zAz*
2 pnfnlt z*¬+∞<z
3 1 2 syl6 A*zA¬+∞<z
4 3 ralrimiv A*zA¬+∞<z
5 4 adantr A*xyAxyzA¬+∞<z
6 peano2re zz+1
7 breq1 x=z+1xyz+1y
8 7 rexbidv x=z+1yAxyyAz+1y
9 8 rspcva z+1xyAxyyAz+1y
10 9 adantrr z+1xyAxyA*yAz+1y
11 10 ancoms xyAxyA*z+1yAz+1y
12 6 11 sylan2 xyAxyA*zyAz+1y
13 ssel2 A*yAy*
14 ltp1 zz<z+1
15 14 adantr zy*z<z+1
16 6 ancli zzz+1
17 rexr zz*
18 rexr z+1z+1*
19 xrltletr z*z+1*y*z<z+1z+1yz<y
20 18 19 syl3an2 z*z+1y*z<z+1z+1yz<y
21 17 20 syl3an1 zz+1y*z<z+1z+1yz<y
22 21 3expa zz+1y*z<z+1z+1yz<y
23 16 22 sylan zy*z<z+1z+1yz<y
24 15 23 mpand zy*z+1yz<y
25 24 ancoms y*zz+1yz<y
26 13 25 sylan A*yAzz+1yz<y
27 26 an32s A*zyAz+1yz<y
28 27 reximdva A*zyAz+1yyAz<y
29 28 adantll xyAxyA*zyAz+1yyAz<y
30 12 29 mpd xyAxyA*zyAz<y
31 30 exp31 xyAxyA*zyAz<y
32 31 a1dd xyAxyA*z<+∞zyAz<y
33 32 com4r zxyAxyA*z<+∞yAz<y
34 33 com13 A*xyAxyzz<+∞yAz<y
35 34 imp A*xyAxyzz<+∞yAz<y
36 35 ralrimiv A*xyAxyzz<+∞yAz<y
37 5 36 jca A*xyAxyzA¬+∞<zzz<+∞yAz<y
38 pnfxr +∞*
39 supxr A*+∞*zA¬+∞<zzz<+∞yAz<ysupA*<=+∞
40 38 39 mpanl2 A*zA¬+∞<zzz<+∞yAz<ysupA*<=+∞
41 37 40 syldan A*xyAxysupA*<=+∞
42 41 ex A*xyAxysupA*<=+∞
43 rexr xx*
44 43 ad2antlr A*xsupA*<=+∞x*
45 ltpnf xx<+∞
46 breq2 supA*<=+∞x<supA*<x<+∞
47 45 46 imbitrrid supA*<=+∞xx<supA*<
48 47 impcom xsupA*<=+∞x<supA*<
49 48 adantll A*xsupA*<=+∞x<supA*<
50 xrltso <Or*
51 50 a1i A*xsupA*<=+∞<Or*
52 xrsupss A*z*wA¬z<ww*w<zyAw<y
53 52 ad2antrr A*xsupA*<=+∞z*wA¬z<ww*w<zyAw<y
54 51 53 suplub A*xsupA*<=+∞x*x<supA*<yAx<y
55 44 49 54 mp2and A*xsupA*<=+∞yAx<y
56 55 ex A*xsupA*<=+∞yAx<y
57 43 ad2antlr A*xyAx*
58 13 adantlr A*xyAy*
59 xrltle x*y*x<yxy
60 57 58 59 syl2anc A*xyAx<yxy
61 60 reximdva A*xyAx<yyAxy
62 56 61 syld A*xsupA*<=+∞yAxy
63 62 ralrimdva A*supA*<=+∞xyAxy
64 42 63 impbid A*xyAxysupA*<=+∞