Database
REAL AND COMPLEX NUMBERS
Words over a set
Subwords of subwords
swrdswrdlem
Next ⟩
swrdswrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
swrdswrdlem
Description:
Lemma for
swrdswrd
.
(Contributed by
Alexander van der Vekens
, 4-Apr-2018)
Ref
Expression
Assertion
swrdswrdlem
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
W
∈
Word
V
∧
M
+
K
∈
0
…
M
+
L
∧
M
+
L
∈
0
…
W
Proof
Step
Hyp
Ref
Expression
1
simpl1
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
W
∈
Word
V
2
elfz2
⊢
L
∈
K
…
N
−
M
↔
K
∈
ℤ
∧
N
−
M
∈
ℤ
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
3
elfz2nn0
⊢
K
∈
0
…
N
−
M
↔
K
∈
ℕ
0
∧
N
−
M
∈
ℕ
0
∧
K
≤
N
−
M
4
elfz2nn0
⊢
M
∈
0
…
N
↔
M
∈
ℕ
0
∧
N
∈
ℕ
0
∧
M
≤
N
5
nn0addcl
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
→
M
+
K
∈
ℕ
0
6
5
adantrr
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
K
∈
ℕ
0
7
6
adantr
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
→
M
+
K
∈
ℕ
0
8
elnn0z
⊢
K
∈
ℕ
0
↔
K
∈
ℤ
∧
0
≤
K
9
0red
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
∈
ℝ
10
zre
⊢
K
∈
ℤ
→
K
∈
ℝ
11
10
adantr
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
K
∈
ℝ
12
zre
⊢
L
∈
ℤ
→
L
∈
ℝ
13
12
adantl
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
L
∈
ℝ
14
letr
⊢
0
∈
ℝ
∧
K
∈
ℝ
∧
L
∈
ℝ
→
0
≤
K
∧
K
≤
L
→
0
≤
L
15
9
11
13
14
syl3anc
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
∧
K
≤
L
→
0
≤
L
16
elnn0z
⊢
L
∈
ℕ
0
↔
L
∈
ℤ
∧
0
≤
L
17
nn0addcl
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
M
+
L
∈
ℕ
0
18
17
expcom
⊢
L
∈
ℕ
0
→
M
∈
ℕ
0
→
M
+
L
∈
ℕ
0
19
16
18
sylbir
⊢
L
∈
ℤ
∧
0
≤
L
→
M
∈
ℕ
0
→
M
+
L
∈
ℕ
0
20
19
ex
⊢
L
∈
ℤ
→
0
≤
L
→
M
∈
ℕ
0
→
M
+
L
∈
ℕ
0
21
20
adantl
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
L
→
M
∈
ℕ
0
→
M
+
L
∈
ℕ
0
22
15
21
syld
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
∧
K
≤
L
→
M
∈
ℕ
0
→
M
+
L
∈
ℕ
0
23
22
expd
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
→
K
≤
L
→
M
∈
ℕ
0
→
M
+
L
∈
ℕ
0
24
23
com34
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
→
M
∈
ℕ
0
→
K
≤
L
→
M
+
L
∈
ℕ
0
25
24
impancom
⊢
K
∈
ℤ
∧
0
≤
K
→
L
∈
ℤ
→
M
∈
ℕ
0
→
K
≤
L
→
M
+
L
∈
ℕ
0
26
8
25
sylbi
⊢
K
∈
ℕ
0
→
L
∈
ℤ
→
M
∈
ℕ
0
→
K
≤
L
→
M
+
L
∈
ℕ
0
27
26
imp
⊢
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
∈
ℕ
0
→
K
≤
L
→
M
+
L
∈
ℕ
0
28
27
impcom
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
→
M
+
L
∈
ℕ
0
29
28
imp
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
→
M
+
L
∈
ℕ
0
30
nn0re
⊢
K
∈
ℕ
0
→
K
∈
ℝ
31
30
adantr
⊢
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
∈
ℝ
32
31
adantl
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
∈
ℝ
33
12
adantl
⊢
K
∈
ℕ
0
∧
L
∈
ℤ
→
L
∈
ℝ
34
33
adantl
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
L
∈
ℝ
35
nn0re
⊢
M
∈
ℕ
0
→
M
∈
ℝ
36
35
adantr
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
∈
ℝ
37
32
34
36
leadd2d
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
↔
M
+
K
≤
M
+
L
38
37
biimpa
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
→
M
+
K
≤
M
+
L
39
7
29
38
3jca
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
40
39
exp31
⊢
M
∈
ℕ
0
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
41
40
com23
⊢
M
∈
ℕ
0
→
K
≤
L
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
42
41
3ad2ant1
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
∧
M
≤
N
→
K
≤
L
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
43
4
42
sylbi
⊢
M
∈
0
…
N
→
K
≤
L
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
44
43
3ad2ant3
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
K
≤
L
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
45
44
com13
⊢
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
46
45
ex
⊢
K
∈
ℕ
0
→
L
∈
ℤ
→
K
≤
L
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
47
46
3ad2ant1
⊢
K
∈
ℕ
0
∧
N
−
M
∈
ℕ
0
∧
K
≤
N
−
M
→
L
∈
ℤ
→
K
≤
L
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
48
3
47
sylbi
⊢
K
∈
0
…
N
−
M
→
L
∈
ℤ
→
K
≤
L
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
49
48
com13
⊢
K
≤
L
→
L
∈
ℤ
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
50
49
adantr
⊢
K
≤
L
∧
L
≤
N
−
M
→
L
∈
ℤ
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
51
50
com12
⊢
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
52
51
3ad2ant3
⊢
K
∈
ℤ
∧
N
−
M
∈
ℤ
∧
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
53
52
imp
⊢
K
∈
ℤ
∧
N
−
M
∈
ℤ
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
54
2
53
sylbi
⊢
L
∈
K
…
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
55
54
impcom
⊢
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
56
55
impcom
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
57
elfz2nn0
⊢
M
+
K
∈
0
…
M
+
L
↔
M
+
K
∈
ℕ
0
∧
M
+
L
∈
ℕ
0
∧
M
+
K
≤
M
+
L
58
56
57
sylibr
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
M
+
K
∈
0
…
M
+
L
59
elfz2nn0
⊢
N
∈
0
…
W
↔
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
60
28
com12
⊢
K
≤
L
→
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
61
60
adantr
⊢
K
≤
L
∧
L
≤
N
−
M
→
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
62
61
impcom
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
→
M
+
L
∈
ℕ
0
63
62
adantr
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
∧
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
∈
ℕ
0
64
simpr2
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
∧
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
W
∈
ℕ
0
65
nn0re
⊢
N
∈
ℕ
0
→
N
∈
ℝ
66
65
35
anim12i
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
N
∈
ℝ
∧
M
∈
ℝ
67
nn0re
⊢
W
∈
ℕ
0
→
W
∈
ℝ
68
66
67
anim12i
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
W
∈
ℕ
0
→
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
69
simpllr
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
M
∈
ℝ
70
simpr
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
L
∈
ℝ
71
simplll
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
N
∈
ℝ
72
69
70
71
leaddsub2d
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
M
+
L
≤
N
↔
L
≤
N
−
M
73
readdcl
⊢
M
∈
ℝ
∧
L
∈
ℝ
→
M
+
L
∈
ℝ
74
73
ad4ant24
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
M
+
L
∈
ℝ
75
simpr
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
→
W
∈
ℝ
76
75
adantr
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
W
∈
ℝ
77
letr
⊢
M
+
L
∈
ℝ
∧
N
∈
ℝ
∧
W
∈
ℝ
→
M
+
L
≤
N
∧
N
≤
W
→
M
+
L
≤
W
78
77
expd
⊢
M
+
L
∈
ℝ
∧
N
∈
ℝ
∧
W
∈
ℝ
→
M
+
L
≤
N
→
N
≤
W
→
M
+
L
≤
W
79
74
71
76
78
syl3anc
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
M
+
L
≤
N
→
N
≤
W
→
M
+
L
≤
W
80
79
a1ddd
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
M
+
L
≤
N
→
N
≤
W
→
0
≤
L
→
M
+
L
≤
W
81
72
80
sylbird
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
L
≤
N
−
M
→
N
≤
W
→
0
≤
L
→
M
+
L
≤
W
82
81
com23
⊢
N
∈
ℝ
∧
M
∈
ℝ
∧
W
∈
ℝ
∧
L
∈
ℝ
→
N
≤
W
→
L
≤
N
−
M
→
0
≤
L
→
M
+
L
≤
W
83
68
12
82
syl2an
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
W
∈
ℕ
0
∧
L
∈
ℤ
→
N
≤
W
→
L
≤
N
−
M
→
0
≤
L
→
M
+
L
≤
W
84
83
ex
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
W
∈
ℕ
0
→
L
∈
ℤ
→
N
≤
W
→
L
≤
N
−
M
→
0
≤
L
→
M
+
L
≤
W
85
84
com25
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
W
∈
ℕ
0
→
0
≤
L
→
N
≤
W
→
L
≤
N
−
M
→
L
∈
ℤ
→
M
+
L
≤
W
86
85
ex
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
W
∈
ℕ
0
→
0
≤
L
→
N
≤
W
→
L
≤
N
−
M
→
L
∈
ℤ
→
M
+
L
≤
W
87
86
com24
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
N
≤
W
→
0
≤
L
→
W
∈
ℕ
0
→
L
≤
N
−
M
→
L
∈
ℤ
→
M
+
L
≤
W
88
87
ex
⊢
N
∈
ℕ
0
→
M
∈
ℕ
0
→
N
≤
W
→
0
≤
L
→
W
∈
ℕ
0
→
L
≤
N
−
M
→
L
∈
ℤ
→
M
+
L
≤
W
89
88
com25
⊢
N
∈
ℕ
0
→
W
∈
ℕ
0
→
N
≤
W
→
0
≤
L
→
M
∈
ℕ
0
→
L
≤
N
−
M
→
L
∈
ℤ
→
M
+
L
≤
W
90
89
3imp
⊢
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
0
≤
L
→
M
∈
ℕ
0
→
L
≤
N
−
M
→
L
∈
ℤ
→
M
+
L
≤
W
91
90
com15
⊢
L
∈
ℤ
→
0
≤
L
→
M
∈
ℕ
0
→
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
92
91
adantl
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
L
→
M
∈
ℕ
0
→
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
93
15
92
syld
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
∧
K
≤
L
→
M
∈
ℕ
0
→
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
94
93
expd
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
→
K
≤
L
→
M
∈
ℕ
0
→
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
95
94
com35
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
→
L
≤
N
−
M
→
M
∈
ℕ
0
→
K
≤
L
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
96
95
com25
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
K
≤
L
→
L
≤
N
−
M
→
M
∈
ℕ
0
→
0
≤
K
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
97
96
impd
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
M
∈
ℕ
0
→
0
≤
K
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
98
97
com24
⊢
K
∈
ℤ
∧
L
∈
ℤ
→
0
≤
K
→
M
∈
ℕ
0
→
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
99
98
impancom
⊢
K
∈
ℤ
∧
0
≤
K
→
L
∈
ℤ
→
M
∈
ℕ
0
→
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
100
8
99
sylbi
⊢
K
∈
ℕ
0
→
L
∈
ℤ
→
M
∈
ℕ
0
→
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
101
100
imp
⊢
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
∈
ℕ
0
→
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
102
101
impcom
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
103
102
imp
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
104
103
imp
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
∧
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
≤
W
105
63
64
104
3jca
⊢
M
∈
ℕ
0
∧
K
∈
ℕ
0
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
∧
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
106
105
exp41
⊢
M
∈
ℕ
0
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
107
106
com24
⊢
M
∈
ℕ
0
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
108
107
3ad2ant1
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
∧
M
≤
N
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
109
4
108
sylbi
⊢
M
∈
0
…
N
→
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
110
109
com12
⊢
N
∈
ℕ
0
∧
W
∈
ℕ
0
∧
N
≤
W
→
M
∈
0
…
N
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
111
59
110
sylbi
⊢
N
∈
0
…
W
→
M
∈
0
…
N
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
112
111
imp
⊢
N
∈
0
…
W
∧
M
∈
0
…
N
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
113
112
3adant1
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
ℕ
0
∧
L
∈
ℤ
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
114
113
com13
⊢
K
∈
ℕ
0
∧
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
115
114
ex
⊢
K
∈
ℕ
0
→
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
116
115
3ad2ant1
⊢
K
∈
ℕ
0
∧
N
−
M
∈
ℕ
0
∧
K
≤
N
−
M
→
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
117
3
116
sylbi
⊢
K
∈
0
…
N
−
M
→
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
118
117
com3l
⊢
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
119
118
3ad2ant3
⊢
K
∈
ℤ
∧
N
−
M
∈
ℤ
∧
L
∈
ℤ
→
K
≤
L
∧
L
≤
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
120
119
imp
⊢
K
∈
ℤ
∧
N
−
M
∈
ℤ
∧
L
∈
ℤ
∧
K
≤
L
∧
L
≤
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
121
2
120
sylbi
⊢
L
∈
K
…
N
−
M
→
K
∈
0
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
122
121
impcom
⊢
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
123
122
impcom
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
124
elfz2nn0
⊢
M
+
L
∈
0
…
W
↔
M
+
L
∈
ℕ
0
∧
W
∈
ℕ
0
∧
M
+
L
≤
W
125
123
124
sylibr
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
M
+
L
∈
0
…
W
126
1
58
125
3jca
⊢
W
∈
Word
V
∧
N
∈
0
…
W
∧
M
∈
0
…
N
∧
K
∈
0
…
N
−
M
∧
L
∈
K
…
N
−
M
→
W
∈
Word
V
∧
M
+
K
∈
0
…
M
+
L
∧
M
+
L
∈
0
…
W