Metamath Proof Explorer


Theorem swrdswrdlem

Description: Lemma for swrdswrd . (Contributed by Alexander van der Vekens, 4-Apr-2018)

Ref Expression
Assertion swrdswrdlem WWordVN0WM0NK0NMLKNMWWordVM+K0M+LM+L0W

Proof

Step Hyp Ref Expression
1 simpl1 WWordVN0WM0NK0NMLKNMWWordV
2 elfz2 LKNMKNMLKLLNM
3 elfz2nn0 K0NMK0NM0KNM
4 elfz2nn0 M0NM0N0MN
5 nn0addcl M0K0M+K0
6 5 adantrr M0K0LM+K0
7 6 adantr M0K0LKLM+K0
8 elnn0z K0K0K
9 0red KL0
10 zre KK
11 10 adantr KLK
12 zre LL
13 12 adantl KLL
14 letr 0KL0KKL0L
15 9 11 13 14 syl3anc KL0KKL0L
16 elnn0z L0L0L
17 nn0addcl M0L0M+L0
18 17 expcom L0M0M+L0
19 16 18 sylbir L0LM0M+L0
20 19 ex L0LM0M+L0
21 20 adantl KL0LM0M+L0
22 15 21 syld KL0KKLM0M+L0
23 22 expd KL0KKLM0M+L0
24 23 com34 KL0KM0KLM+L0
25 24 impancom K0KLM0KLM+L0
26 8 25 sylbi K0LM0KLM+L0
27 26 imp K0LM0KLM+L0
28 27 impcom M0K0LKLM+L0
29 28 imp M0K0LKLM+L0
30 nn0re K0K
31 30 adantr K0LK
32 31 adantl M0K0LK
33 12 adantl K0LL
34 33 adantl M0K0LL
35 nn0re M0M
36 35 adantr M0K0LM
37 32 34 36 leadd2d M0K0LKLM+KM+L
38 37 biimpa M0K0LKLM+KM+L
39 7 29 38 3jca M0K0LKLM+K0M+L0M+KM+L
40 39 exp31 M0K0LKLM+K0M+L0M+KM+L
41 40 com23 M0KLK0LM+K0M+L0M+KM+L
42 41 3ad2ant1 M0N0MNKLK0LM+K0M+L0M+KM+L
43 4 42 sylbi M0NKLK0LM+K0M+L0M+KM+L
44 43 3ad2ant3 WWordVN0WM0NKLK0LM+K0M+L0M+KM+L
45 44 com13 K0LKLWWordVN0WM0NM+K0M+L0M+KM+L
46 45 ex K0LKLWWordVN0WM0NM+K0M+L0M+KM+L
47 46 3ad2ant1 K0NM0KNMLKLWWordVN0WM0NM+K0M+L0M+KM+L
48 3 47 sylbi K0NMLKLWWordVN0WM0NM+K0M+L0M+KM+L
49 48 com13 KLLK0NMWWordVN0WM0NM+K0M+L0M+KM+L
50 49 adantr KLLNMLK0NMWWordVN0WM0NM+K0M+L0M+KM+L
51 50 com12 LKLLNMK0NMWWordVN0WM0NM+K0M+L0M+KM+L
52 51 3ad2ant3 KNMLKLLNMK0NMWWordVN0WM0NM+K0M+L0M+KM+L
53 52 imp KNMLKLLNMK0NMWWordVN0WM0NM+K0M+L0M+KM+L
54 2 53 sylbi LKNMK0NMWWordVN0WM0NM+K0M+L0M+KM+L
55 54 impcom K0NMLKNMWWordVN0WM0NM+K0M+L0M+KM+L
56 55 impcom WWordVN0WM0NK0NMLKNMM+K0M+L0M+KM+L
57 elfz2nn0 M+K0M+LM+K0M+L0M+KM+L
58 56 57 sylibr WWordVN0WM0NK0NMLKNMM+K0M+L
59 elfz2nn0 N0WN0W0NW
60 28 com12 KLM0K0LM+L0
61 60 adantr KLLNMM0K0LM+L0
62 61 impcom M0K0LKLLNMM+L0
63 62 adantr M0K0LKLLNMN0W0NWM+L0
64 simpr2 M0K0LKLLNMN0W0NWW0
65 nn0re N0N
66 65 35 anim12i N0M0NM
67 nn0re W0W
68 66 67 anim12i N0M0W0NMW
69 simpllr NMWLM
70 simpr NMWLL
71 simplll NMWLN
72 69 70 71 leaddsub2d NMWLM+LNLNM
73 readdcl MLM+L
74 73 ad4ant24 NMWLM+L
75 simpr NMWW
76 75 adantr NMWLW
77 letr M+LNWM+LNNWM+LW
78 77 expd M+LNWM+LNNWM+LW
79 74 71 76 78 syl3anc NMWLM+LNNWM+LW
80 79 a1ddd NMWLM+LNNW0LM+LW
81 72 80 sylbird NMWLLNMNW0LM+LW
82 81 com23 NMWLNWLNM0LM+LW
83 68 12 82 syl2an N0M0W0LNWLNM0LM+LW
84 83 ex N0M0W0LNWLNM0LM+LW
85 84 com25 N0M0W00LNWLNMLM+LW
86 85 ex N0M0W00LNWLNMLM+LW
87 86 com24 N0M0NW0LW0LNMLM+LW
88 87 ex N0M0NW0LW0LNMLM+LW
89 88 com25 N0W0NW0LM0LNMLM+LW
90 89 3imp N0W0NW0LM0LNMLM+LW
91 90 com15 L0LM0LNMN0W0NWM+LW
92 91 adantl KL0LM0LNMN0W0NWM+LW
93 15 92 syld KL0KKLM0LNMN0W0NWM+LW
94 93 expd KL0KKLM0LNMN0W0NWM+LW
95 94 com35 KL0KLNMM0KLN0W0NWM+LW
96 95 com25 KLKLLNMM00KN0W0NWM+LW
97 96 impd KLKLLNMM00KN0W0NWM+LW
98 97 com24 KL0KM0KLLNMN0W0NWM+LW
99 98 impancom K0KLM0KLLNMN0W0NWM+LW
100 8 99 sylbi K0LM0KLLNMN0W0NWM+LW
101 100 imp K0LM0KLLNMN0W0NWM+LW
102 101 impcom M0K0LKLLNMN0W0NWM+LW
103 102 imp M0K0LKLLNMN0W0NWM+LW
104 103 imp M0K0LKLLNMN0W0NWM+LW
105 63 64 104 3jca M0K0LKLLNMN0W0NWM+L0W0M+LW
106 105 exp41 M0K0LKLLNMN0W0NWM+L0W0M+LW
107 106 com24 M0N0W0NWKLLNMK0LM+L0W0M+LW
108 107 3ad2ant1 M0N0MNN0W0NWKLLNMK0LM+L0W0M+LW
109 4 108 sylbi M0NN0W0NWKLLNMK0LM+L0W0M+LW
110 109 com12 N0W0NWM0NKLLNMK0LM+L0W0M+LW
111 59 110 sylbi N0WM0NKLLNMK0LM+L0W0M+LW
112 111 imp N0WM0NKLLNMK0LM+L0W0M+LW
113 112 3adant1 WWordVN0WM0NKLLNMK0LM+L0W0M+LW
114 113 com13 K0LKLLNMWWordVN0WM0NM+L0W0M+LW
115 114 ex K0LKLLNMWWordVN0WM0NM+L0W0M+LW
116 115 3ad2ant1 K0NM0KNMLKLLNMWWordVN0WM0NM+L0W0M+LW
117 3 116 sylbi K0NMLKLLNMWWordVN0WM0NM+L0W0M+LW
118 117 com3l LKLLNMK0NMWWordVN0WM0NM+L0W0M+LW
119 118 3ad2ant3 KNMLKLLNMK0NMWWordVN0WM0NM+L0W0M+LW
120 119 imp KNMLKLLNMK0NMWWordVN0WM0NM+L0W0M+LW
121 2 120 sylbi LKNMK0NMWWordVN0WM0NM+L0W0M+LW
122 121 impcom K0NMLKNMWWordVN0WM0NM+L0W0M+LW
123 122 impcom WWordVN0WM0NK0NMLKNMM+L0W0M+LW
124 elfz2nn0 M+L0WM+L0W0M+LW
125 123 124 sylibr WWordVN0WM0NK0NMLKNMM+L0W
126 1 58 125 3jca WWordVN0WM0NK0NMLKNMWWordVM+K0M+LM+L0W