Metamath Proof Explorer


Theorem symgcom

Description: Two permutations X and Y commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 15-Oct-2023)

Ref Expression
Hypotheses symgcom.g G=SymGrpA
symgcom.b B=BaseG
symgcom.x φXB
symgcom.y φYB
symgcom.1 φXE=IE
symgcom.2 φYF=IF
symgcom.3 φEF=
symgcom.4 φEF=A
Assertion symgcom φXY=YX

Proof

Step Hyp Ref Expression
1 symgcom.g G=SymGrpA
2 symgcom.b B=BaseG
3 symgcom.x φXB
4 symgcom.y φYB
5 symgcom.1 φXE=IE
6 symgcom.2 φYF=IF
7 symgcom.3 φEF=
8 symgcom.4 φEF=A
9 8 reseq2d φXYEF=XYA
10 resundi XYEF=XYEXYF
11 resco XYE=XYE
12 1 2 symgbasf1o YBY:A1-1 ontoA
13 4 12 syl φY:A1-1 ontoA
14 f1ocnv Y:A1-1 ontoAY-1:A1-1 ontoA
15 f1ofun Y-1:A1-1 ontoAFunY-1
16 13 14 15 3syl φFunY-1
17 f1ofn Y:A1-1 ontoAYFnA
18 fnresdm YFnAYA=Y
19 13 17 18 3syl φYA=Y
20 f1ofo Y:A1-1 ontoAY:AontoA
21 13 20 syl φY:AontoA
22 foeq1 YA=YYA:AontoAY:AontoA
23 22 biimpar YA=YY:AontoAYA:AontoA
24 19 21 23 syl2anc φYA:AontoA
25 f1oi IF:F1-1 ontoF
26 f1ofo IF:F1-1 ontoFIF:FontoF
27 25 26 mp1i φIF:FontoF
28 foeq1 YF=IFYF:FontoFIF:FontoF
29 28 biimpar YF=IFIF:FontoFYF:FontoF
30 6 27 29 syl2anc φYF:FontoF
31 resdif FunY-1YA:AontoAYF:FontoFYAF:AF1-1 ontoAF
32 16 24 30 31 syl3anc φYAF:AF1-1 ontoAF
33 ssun2 FEF
34 33 8 sseqtrid φFA
35 incom EF=FE
36 35 7 eqtr3id φFE=
37 uncom EF=FE
38 37 8 eqtr3id φFE=A
39 uneqdifeq FAFE=FE=AAF=E
40 39 biimpa FAFE=FE=AAF=E
41 34 36 38 40 syl21anc φAF=E
42 41 reseq2d φYAF=YE
43 42 41 41 f1oeq123d φYAF:AF1-1 ontoAFYE:E1-1 ontoE
44 32 43 mpbid φYE:E1-1 ontoE
45 f1of YE:E1-1 ontoEYE:EE
46 44 45 syl φYE:EE
47 46 frnd φranYEE
48 cores ranYEEXEYE=XYE
49 47 48 syl φXEYE=XYE
50 11 49 eqtr4id φXYE=XEYE
51 5 coeq1d φXEYE=IEYE
52 fcoi2 YE:EEIEYE=YE
53 46 52 syl φIEYE=YE
54 50 51 53 3eqtrd φXYE=YE
55 resco XYF=XYF
56 6 coeq2d φXYF=XIF
57 coires1 XIF=XF
58 56 57 eqtrdi φXYF=XF
59 55 58 eqtrid φXYF=XF
60 54 59 uneq12d φXYEXYF=YEXF
61 10 60 eqtrid φXYEF=YEXF
62 1 2 symgbasf1o XBX:A1-1 ontoA
63 3 62 syl φX:A1-1 ontoA
64 f1oco X:A1-1 ontoAY:A1-1 ontoAXY:A1-1 ontoA
65 63 13 64 syl2anc φXY:A1-1 ontoA
66 f1ofn XY:A1-1 ontoAXYFnA
67 fnresdm XYFnAXYA=XY
68 65 66 67 3syl φXYA=XY
69 9 61 68 3eqtr3d φYEXF=XY
70 8 reseq2d φYXEF=YXA
71 resundi YXEF=YXEYXF
72 resco YXE=YXE
73 5 coeq2d φYXE=YIE
74 coires1 YIE=YE
75 73 74 eqtrdi φYXE=YE
76 72 75 eqtrid φYXE=YE
77 resco YXF=YXF
78 f1ocnv X:A1-1 ontoAX-1:A1-1 ontoA
79 f1ofun X-1:A1-1 ontoAFunX-1
80 63 78 79 3syl φFunX-1
81 f1ofn X:A1-1 ontoAXFnA
82 fnresdm XFnAXA=X
83 63 81 82 3syl φXA=X
84 f1ofo X:A1-1 ontoAX:AontoA
85 63 84 syl φX:AontoA
86 foeq1 XA=XXA:AontoAX:AontoA
87 86 biimpar XA=XX:AontoAXA:AontoA
88 83 85 87 syl2anc φXA:AontoA
89 f1oi IE:E1-1 ontoE
90 f1ofo IE:E1-1 ontoEIE:EontoE
91 89 90 mp1i φIE:EontoE
92 foeq1 XE=IEXE:EontoEIE:EontoE
93 92 biimpar XE=IEIE:EontoEXE:EontoE
94 5 91 93 syl2anc φXE:EontoE
95 resdif FunX-1XA:AontoAXE:EontoEXAE:AE1-1 ontoAE
96 80 88 94 95 syl3anc φXAE:AE1-1 ontoAE
97 ssun1 EEF
98 97 8 sseqtrid φEA
99 uneqdifeq EAEF=EF=AAE=F
100 99 biimpa EAEF=EF=AAE=F
101 98 7 8 100 syl21anc φAE=F
102 101 reseq2d φXAE=XF
103 102 101 101 f1oeq123d φXAE:AE1-1 ontoAEXF:F1-1 ontoF
104 96 103 mpbid φXF:F1-1 ontoF
105 f1of XF:F1-1 ontoFXF:FF
106 104 105 syl φXF:FF
107 106 frnd φranXFF
108 cores ranXFFYFXF=YXF
109 107 108 syl φYFXF=YXF
110 77 109 eqtr4id φYXF=YFXF
111 6 coeq1d φYFXF=IFXF
112 fcoi2 XF:FFIFXF=XF
113 106 112 syl φIFXF=XF
114 110 111 113 3eqtrd φYXF=XF
115 76 114 uneq12d φYXEYXF=YEXF
116 71 115 eqtrid φYXEF=YEXF
117 f1oco Y:A1-1 ontoAX:A1-1 ontoAYX:A1-1 ontoA
118 13 63 117 syl2anc φYX:A1-1 ontoA
119 f1ofn YX:A1-1 ontoAYXFnA
120 fnresdm YXFnAYXA=YX
121 118 119 120 3syl φYXA=YX
122 70 116 121 3eqtr3d φYEXF=YX
123 69 122 eqtr3d φXY=YX