Metamath Proof Explorer


Theorem taylfvallem1

Description: Lemma for taylfval . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φS
taylfval.f φF:A
taylfval.a φAS
taylfval.n φN0N=+∞
taylfval.b φk0NBdomSDnFk
Assertion taylfvallem1 φXk0NSDnFkBk!XBk

Proof

Step Hyp Ref Expression
1 taylfval.s φS
2 taylfval.f φF:A
3 taylfval.a φAS
4 taylfval.n φN0N=+∞
5 taylfval.b φk0NBdomSDnFk
6 1 ad2antrr φXk0NS
7 cnex V
8 7 a1i φV
9 elpm2r VSF:AASF𝑝𝑚S
10 8 1 2 3 9 syl22anc φF𝑝𝑚S
11 10 ad2antrr φXk0NF𝑝𝑚S
12 simpr φXk0Nk0N
13 12 elin2d φXk0Nk
14 12 elin1d φXk0Nk0N
15 0xr 0*
16 nn0re N0N
17 16 rexrd N0N*
18 id N=+∞N=+∞
19 pnfxr +∞*
20 18 19 eqeltrdi N=+∞N*
21 17 20 jaoi N0N=+∞N*
22 4 21 syl φN*
23 22 ad2antrr φXk0NN*
24 elicc1 0*N*k0Nk*0kkN
25 15 23 24 sylancr φXk0Nk0Nk*0kkN
26 14 25 mpbid φXk0Nk*0kkN
27 26 simp2d φXk0N0k
28 elnn0z k0k0k
29 13 27 28 sylanbrc φXk0Nk0
30 dvnf SF𝑝𝑚Sk0SDnFk:domSDnFk
31 6 11 29 30 syl3anc φXk0NSDnFk:domSDnFk
32 5 adantlr φXk0NBdomSDnFk
33 31 32 ffvelcdmd φXk0NSDnFkB
34 29 faccld φXk0Nk!
35 34 nncnd φXk0Nk!
36 34 nnne0d φXk0Nk!0
37 33 35 36 divcld φXk0NSDnFkBk!
38 simplr φXk0NX
39 2 ad2antrr φXk0NF:A
40 dvnbss SF𝑝𝑚Sk0domSDnFkdomF
41 6 11 29 40 syl3anc φXk0NdomSDnFkdomF
42 39 41 fssdmd φXk0NdomSDnFkA
43 recnprss SS
44 1 43 syl φS
45 3 44 sstrd φA
46 45 ad2antrr φXk0NA
47 42 46 sstrd φXk0NdomSDnFk
48 47 32 sseldd φXk0NB
49 38 48 subcld φXk0NXB
50 49 29 expcld φXk0NXBk
51 37 50 mulcld φXk0NSDnFkBk!XBk