Description: Lemma for taylfval . (Contributed by Mario Carneiro, 30-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | taylfval.s | |
|
taylfval.f | |
||
taylfval.a | |
||
taylfval.n | |
||
taylfval.b | |
||
Assertion | taylfvallem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylfval.s | |
|
2 | taylfval.f | |
|
3 | taylfval.a | |
|
4 | taylfval.n | |
|
5 | taylfval.b | |
|
6 | 1 | ad2antrr | |
7 | cnex | |
|
8 | 7 | a1i | |
9 | elpm2r | |
|
10 | 8 1 2 3 9 | syl22anc | |
11 | 10 | ad2antrr | |
12 | simpr | |
|
13 | 12 | elin2d | |
14 | 12 | elin1d | |
15 | 0xr | |
|
16 | nn0re | |
|
17 | 16 | rexrd | |
18 | id | |
|
19 | pnfxr | |
|
20 | 18 19 | eqeltrdi | |
21 | 17 20 | jaoi | |
22 | 4 21 | syl | |
23 | 22 | ad2antrr | |
24 | elicc1 | |
|
25 | 15 23 24 | sylancr | |
26 | 14 25 | mpbid | |
27 | 26 | simp2d | |
28 | elnn0z | |
|
29 | 13 27 28 | sylanbrc | |
30 | dvnf | |
|
31 | 6 11 29 30 | syl3anc | |
32 | 5 | adantlr | |
33 | 31 32 | ffvelcdmd | |
34 | 29 | faccld | |
35 | 34 | nncnd | |
36 | 34 | nnne0d | |
37 | 33 35 36 | divcld | |
38 | simplr | |
|
39 | 2 | ad2antrr | |
40 | dvnbss | |
|
41 | 6 11 29 40 | syl3anc | |
42 | 39 41 | fssdmd | |
43 | recnprss | |
|
44 | 1 43 | syl | |
45 | 3 44 | sstrd | |
46 | 45 | ad2antrr | |
47 | 42 46 | sstrd | |
48 | 47 32 | sseldd | |
49 | 38 48 | subcld | |
50 | 49 29 | expcld | |
51 | 37 50 | mulcld | |