Metamath Proof Explorer


Theorem tfrlem1

Description: A technical lemma for transfinite recursion. Compare Lemma 1 of TakeutiZaring p. 47. (Contributed by NM, 23-Mar-1995) (Revised by Mario Carneiro, 24-May-2019)

Ref Expression
Hypotheses tfrlem1.1 φAOn
tfrlem1.2 φFunFAdomF
tfrlem1.3 φFunGAdomG
tfrlem1.4 φxAFx=BFx
tfrlem1.5 φxAGx=BGx
Assertion tfrlem1 φxAFx=Gx

Proof

Step Hyp Ref Expression
1 tfrlem1.1 φAOn
2 tfrlem1.2 φFunFAdomF
3 tfrlem1.3 φFunGAdomG
4 tfrlem1.4 φxAFx=BFx
5 tfrlem1.5 φxAGx=BGx
6 ssid AA
7 sseq1 y=zyAzA
8 raleq y=zxyFx=GxxzFx=Gx
9 7 8 imbi12d y=zyAxyFx=GxzAxzFx=Gx
10 9 imbi2d y=zφyAxyFx=GxφzAxzFx=Gx
11 sseq1 y=AyAAA
12 raleq y=AxyFx=GxxAFx=Gx
13 11 12 imbi12d y=AyAxyFx=GxAAxAFx=Gx
14 13 imbi2d y=AφyAxyFx=GxφAAxAFx=Gx
15 r19.21v zyφzAxzFx=GxφzyzAxzFx=Gx
16 2 ad4antr φyOnzyzAxzFx=GxyAwyFunFAdomF
17 16 simpld φyOnzyzAxzFx=GxyAwyFunF
18 17 funfnd φyOnzyzAxzFx=GxyAwyFFndomF
19 eloni yOnOrdy
20 19 ad3antlr φyOnzyzAxzFx=GxyAOrdy
21 ordelss Ordywywy
22 20 21 sylan φyOnzyzAxzFx=GxyAwywy
23 simplr φyOnzyzAxzFx=GxyAwyyA
24 22 23 sstrd φyOnzyzAxzFx=GxyAwywA
25 16 simprd φyOnzyzAxzFx=GxyAwyAdomF
26 24 25 sstrd φyOnzyzAxzFx=GxyAwywdomF
27 fnssres FFndomFwdomFFwFnw
28 18 26 27 syl2anc φyOnzyzAxzFx=GxyAwyFwFnw
29 3 ad4antr φyOnzyzAxzFx=GxyAwyFunGAdomG
30 29 simpld φyOnzyzAxzFx=GxyAwyFunG
31 30 funfnd φyOnzyzAxzFx=GxyAwyGFndomG
32 29 simprd φyOnzyzAxzFx=GxyAwyAdomG
33 24 32 sstrd φyOnzyzAxzFx=GxyAwywdomG
34 fnssres GFndomGwdomGGwFnw
35 31 33 34 syl2anc φyOnzyzAxzFx=GxyAwyGwFnw
36 fveq2 x=uFx=Fu
37 fveq2 x=uGx=Gu
38 36 37 eqeq12d x=uFx=GxFu=Gu
39 24 adantr φyOnzyzAxzFx=GxyAwyuwwA
40 sseq1 z=wzAwA
41 raleq z=wxzFx=GxxwFx=Gx
42 40 41 imbi12d z=wzAxzFx=GxwAxwFx=Gx
43 simp-4r φyOnzyzAxzFx=GxyAwyuwzyzAxzFx=Gx
44 simplr φyOnzyzAxzFx=GxyAwyuwwy
45 42 43 44 rspcdva φyOnzyzAxzFx=GxyAwyuwwAxwFx=Gx
46 39 45 mpd φyOnzyzAxzFx=GxyAwyuwxwFx=Gx
47 simpr φyOnzyzAxzFx=GxyAwyuwuw
48 38 46 47 rspcdva φyOnzyzAxzFx=GxyAwyuwFu=Gu
49 fvres uwFwu=Fu
50 49 adantl φyOnzyzAxzFx=GxyAwyuwFwu=Fu
51 fvres uwGwu=Gu
52 51 adantl φyOnzyzAxzFx=GxyAwyuwGwu=Gu
53 48 50 52 3eqtr4d φyOnzyzAxzFx=GxyAwyuwFwu=Gwu
54 28 35 53 eqfnfvd φyOnzyzAxzFx=GxyAwyFw=Gw
55 54 fveq2d φyOnzyzAxzFx=GxyAwyBFw=BGw
56 fveq2 x=wFx=Fw
57 reseq2 x=wFx=Fw
58 57 fveq2d x=wBFx=BFw
59 56 58 eqeq12d x=wFx=BFxFw=BFw
60 4 ad4antr φyOnzyzAxzFx=GxyAwyxAFx=BFx
61 simpr φyOnzyzAxzFx=GxyAyA
62 61 sselda φyOnzyzAxzFx=GxyAwywA
63 59 60 62 rspcdva φyOnzyzAxzFx=GxyAwyFw=BFw
64 fveq2 x=wGx=Gw
65 reseq2 x=wGx=Gw
66 65 fveq2d x=wBGx=BGw
67 64 66 eqeq12d x=wGx=BGxGw=BGw
68 5 ad4antr φyOnzyzAxzFx=GxyAwyxAGx=BGx
69 67 68 62 rspcdva φyOnzyzAxzFx=GxyAwyGw=BGw
70 55 63 69 3eqtr4d φyOnzyzAxzFx=GxyAwyFw=Gw
71 70 ralrimiva φyOnzyzAxzFx=GxyAwyFw=Gw
72 56 64 eqeq12d x=wFx=GxFw=Gw
73 72 cbvralvw xyFx=GxwyFw=Gw
74 71 73 sylibr φyOnzyzAxzFx=GxyAxyFx=Gx
75 74 exp31 φyOnzyzAxzFx=GxyAxyFx=Gx
76 75 expcom yOnφzyzAxzFx=GxyAxyFx=Gx
77 76 a2d yOnφzyzAxzFx=GxφyAxyFx=Gx
78 15 77 biimtrid yOnzyφzAxzFx=GxφyAxyFx=Gx
79 10 14 78 tfis3 AOnφAAxAFx=Gx
80 1 79 mpcom φAAxAFx=Gx
81 6 80 mpi φxAFx=Gx