| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfsconcat.op |  | 
						
							| 2 | 1 | tfsconcatun |  | 
						
							| 3 | 2 | rneqd |  | 
						
							| 4 |  | rnun |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 |  | df-rex |  | 
						
							| 7 |  | pm3.22 |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | oaordi |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 10 | imp |  | 
						
							| 12 |  | simplrl |  | 
						
							| 13 |  | simprr |  | 
						
							| 14 |  | onelon |  | 
						
							| 15 | 13 14 | sylan |  | 
						
							| 16 |  | oaword1 |  | 
						
							| 17 | 12 15 16 | syl2anc |  | 
						
							| 18 |  | oacl |  | 
						
							| 19 | 18 | ad2antlr |  | 
						
							| 20 |  | eloni |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 |  | eloni |  | 
						
							| 23 | 12 22 | syl |  | 
						
							| 24 |  | ordeldif |  | 
						
							| 25 | 21 23 24 | syl2anc |  | 
						
							| 26 | 11 17 25 | mpbir2and |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 18 20 | syl |  | 
						
							| 30 | 22 | adantr |  | 
						
							| 31 | 29 30 | jca |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | ordeldif |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 | 34 | biimpa |  | 
						
							| 36 | 35 | ancomd |  | 
						
							| 37 |  | oawordex2 |  | 
						
							| 38 | 28 36 37 | syl2anc |  | 
						
							| 39 |  | eqcom |  | 
						
							| 40 | 39 | rexbii |  | 
						
							| 41 | 38 40 | sylib |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 |  | simpll3 |  | 
						
							| 44 | 42 43 | eqtr3d |  | 
						
							| 45 |  | simp1rl |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 |  | simp1rr |  | 
						
							| 48 |  | onelon |  | 
						
							| 49 | 47 48 | sylan |  | 
						
							| 50 |  | simp2 |  | 
						
							| 51 | 47 50 14 | syl2anc |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 46 49 52 | 3jca |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 |  | oacan |  | 
						
							| 56 | 54 55 | syl |  | 
						
							| 57 | 44 56 | mpbid |  | 
						
							| 58 |  | velsn |  | 
						
							| 59 | 57 58 | sylibr |  | 
						
							| 60 | 59 | ex |  | 
						
							| 61 | 60 | adantrd |  | 
						
							| 62 | 61 | expimpd |  | 
						
							| 63 |  | simprr |  | 
						
							| 64 | 62 63 | jca2 |  | 
						
							| 65 | 64 | reximdv2 |  | 
						
							| 66 |  | vex |  | 
						
							| 67 |  | fveq2 |  | 
						
							| 68 | 67 | eqeq2d |  | 
						
							| 69 | 66 68 | rexsn |  | 
						
							| 70 | 65 69 | imbitrdi |  | 
						
							| 71 | 50 | adantr |  | 
						
							| 72 |  | simpl3 |  | 
						
							| 73 |  | simpr |  | 
						
							| 74 |  | oveq2 |  | 
						
							| 75 | 74 | eqeq2d |  | 
						
							| 76 | 75 68 | anbi12d |  | 
						
							| 77 | 76 | rspcev |  | 
						
							| 78 | 71 72 73 77 | syl12anc |  | 
						
							| 79 | 78 | ex |  | 
						
							| 80 | 70 79 | impbid |  | 
						
							| 81 | 26 41 80 | rexxfrd2 |  | 
						
							| 82 | 6 81 | bitr3id |  | 
						
							| 83 | 82 | abbidv |  | 
						
							| 84 |  | rnopab |  | 
						
							| 85 | 84 | a1i |  | 
						
							| 86 |  | fnrnfv |  | 
						
							| 87 | 86 | ad2antlr |  | 
						
							| 88 | 83 85 87 | 3eqtr4d |  | 
						
							| 89 | 88 | uneq2d |  | 
						
							| 90 | 3 5 89 | 3eqtrd |  |