Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
|
2 |
|
eltg3 |
|
3 |
1 2
|
ax-mp |
|
4 |
|
simpll |
|
5 |
|
funmpt |
|
6 |
5
|
a1i |
|
7 |
|
restval |
|
8 |
7
|
sseq2d |
|
9 |
8
|
biimpa |
|
10 |
|
vex |
|
11 |
10
|
inex1 |
|
12 |
11
|
rgenw |
|
13 |
|
eqid |
|
14 |
13
|
fnmpt |
|
15 |
|
fnima |
|
16 |
12 14 15
|
mp2b |
|
17 |
9 16
|
sseqtrrdi |
|
18 |
|
ssimaexg |
|
19 |
4 6 17 18
|
syl3anc |
|
20 |
|
df-ima |
|
21 |
|
resmpt |
|
22 |
21
|
adantl |
|
23 |
22
|
rneqd |
|
24 |
20 23
|
eqtrid |
|
25 |
24
|
unieqd |
|
26 |
11
|
dfiun3 |
|
27 |
25 26
|
eqtr4di |
|
28 |
|
iunin1 |
|
29 |
27 28
|
eqtrdi |
|
30 |
|
fvex |
|
31 |
|
simpr |
|
32 |
|
uniiun |
|
33 |
|
eltg3i |
|
34 |
32 33
|
eqeltrrid |
|
35 |
34
|
adantlr |
|
36 |
|
elrestr |
|
37 |
30 31 35 36
|
mp3an2ani |
|
38 |
29 37
|
eqeltrd |
|
39 |
|
unieq |
|
40 |
39
|
eleq1d |
|
41 |
38 40
|
syl5ibrcom |
|
42 |
41
|
expimpd |
|
43 |
42
|
exlimdv |
|
44 |
43
|
adantr |
|
45 |
19 44
|
mpd |
|
46 |
|
eleq1 |
|
47 |
45 46
|
syl5ibrcom |
|
48 |
47
|
expimpd |
|
49 |
48
|
exlimdv |
|
50 |
3 49
|
syl5bi |
|
51 |
50
|
ssrdv |
|
52 |
|
restval |
|
53 |
30 31 52
|
sylancr |
|
54 |
|
eltg3 |
|
55 |
54
|
adantr |
|
56 |
32
|
ineq1i |
|
57 |
56 28
|
eqtr4i |
|
58 |
|
simplll |
|
59 |
|
simpllr |
|
60 |
|
simpr |
|
61 |
60
|
sselda |
|
62 |
|
elrestr |
|
63 |
58 59 61 62
|
syl3anc |
|
64 |
63
|
fmpttd |
|
65 |
64
|
frnd |
|
66 |
|
eltg3i |
|
67 |
1 65 66
|
sylancr |
|
68 |
26 67
|
eqeltrid |
|
69 |
57 68
|
eqeltrid |
|
70 |
|
ineq1 |
|
71 |
70
|
eleq1d |
|
72 |
69 71
|
syl5ibrcom |
|
73 |
72
|
expimpd |
|
74 |
73
|
exlimdv |
|
75 |
55 74
|
sylbid |
|
76 |
75
|
imp |
|
77 |
76
|
fmpttd |
|
78 |
77
|
frnd |
|
79 |
53 78
|
eqsstrd |
|
80 |
51 79
|
eqssd |
|