Description: Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | topjoin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop | |
|
2 | 1 | ad2antrl | |
3 | toponmax | |
|
4 | 3 | ad2antrl | |
5 | 4 | snssd | |
6 | simprr | |
|
7 | unissb | |
|
8 | 6 7 | sylibr | |
9 | 5 8 | unssd | |
10 | tgfiss | |
|
11 | 2 9 10 | syl2anc | |
12 | 11 | expr | |
13 | 12 | ralrimiva | |
14 | ssintrab | |
|
15 | 13 14 | sylibr | |
16 | fibas | |
|
17 | tgtopon | |
|
18 | 16 17 | ax-mp | |
19 | uniun | |
|
20 | unisng | |
|
21 | 20 | adantr | |
22 | 21 | uneq1d | |
23 | 19 22 | eqtr2id | |
24 | simpr | |
|
25 | toponuni | |
|
26 | eqimss2 | |
|
27 | 25 26 | syl | |
28 | sspwuni | |
|
29 | 27 28 | sylibr | |
30 | velpw | |
|
31 | 29 30 | sylibr | |
32 | 31 | ssriv | |
33 | 24 32 | sstrdi | |
34 | sspwuni | |
|
35 | 33 34 | sylib | |
36 | sspwuni | |
|
37 | 35 36 | sylib | |
38 | ssequn2 | |
|
39 | 37 38 | sylib | |
40 | snex | |
|
41 | fvex | |
|
42 | 41 | ssex | |
43 | 42 | adantl | |
44 | 43 | uniexd | |
45 | unexg | |
|
46 | 40 44 45 | sylancr | |
47 | fiuni | |
|
48 | 46 47 | syl | |
49 | 23 39 48 | 3eqtr3d | |
50 | 49 | fveq2d | |
51 | 18 50 | eleqtrrid | |
52 | elssuni | |
|
53 | ssun2 | |
|
54 | 52 53 | sstrdi | |
55 | ssfii | |
|
56 | 46 55 | syl | |
57 | 54 56 | sylan9ssr | |
58 | bastg | |
|
59 | 16 58 | ax-mp | |
60 | 57 59 | sstrdi | |
61 | 60 | ralrimiva | |
62 | sseq2 | |
|
63 | 62 | ralbidv | |
64 | 63 | elrab | |
65 | 51 61 64 | sylanbrc | |
66 | intss1 | |
|
67 | 65 66 | syl | |
68 | 15 67 | eqssd | |