Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
|
2 |
1
|
ad2antrl |
|
3 |
|
toponmax |
|
4 |
3
|
ad2antrl |
|
5 |
4
|
snssd |
|
6 |
|
simprr |
|
7 |
|
unissb |
|
8 |
6 7
|
sylibr |
|
9 |
5 8
|
unssd |
|
10 |
|
tgfiss |
|
11 |
2 9 10
|
syl2anc |
|
12 |
11
|
expr |
|
13 |
12
|
ralrimiva |
|
14 |
|
ssintrab |
|
15 |
13 14
|
sylibr |
|
16 |
|
fibas |
|
17 |
|
tgtopon |
|
18 |
16 17
|
ax-mp |
|
19 |
|
uniun |
|
20 |
|
unisng |
|
21 |
20
|
adantr |
|
22 |
21
|
uneq1d |
|
23 |
19 22
|
eqtr2id |
|
24 |
|
simpr |
|
25 |
|
toponuni |
|
26 |
|
eqimss2 |
|
27 |
25 26
|
syl |
|
28 |
|
sspwuni |
|
29 |
27 28
|
sylibr |
|
30 |
|
velpw |
|
31 |
29 30
|
sylibr |
|
32 |
31
|
ssriv |
|
33 |
24 32
|
sstrdi |
|
34 |
|
sspwuni |
|
35 |
33 34
|
sylib |
|
36 |
|
sspwuni |
|
37 |
35 36
|
sylib |
|
38 |
|
ssequn2 |
|
39 |
37 38
|
sylib |
|
40 |
|
snex |
|
41 |
|
fvex |
|
42 |
41
|
ssex |
|
43 |
42
|
adantl |
|
44 |
43
|
uniexd |
|
45 |
|
unexg |
|
46 |
40 44 45
|
sylancr |
|
47 |
|
fiuni |
|
48 |
46 47
|
syl |
|
49 |
23 39 48
|
3eqtr3d |
|
50 |
49
|
fveq2d |
|
51 |
18 50
|
eleqtrrid |
|
52 |
|
elssuni |
|
53 |
|
ssun2 |
|
54 |
52 53
|
sstrdi |
|
55 |
|
ssfii |
|
56 |
46 55
|
syl |
|
57 |
54 56
|
sylan9ssr |
|
58 |
|
bastg |
|
59 |
16 58
|
ax-mp |
|
60 |
57 59
|
sstrdi |
|
61 |
60
|
ralrimiva |
|
62 |
|
sseq2 |
|
63 |
62
|
ralbidv |
|
64 |
63
|
elrab |
|
65 |
51 61 64
|
sylanbrc |
|
66 |
|
intss1 |
|
67 |
65 66
|
syl |
|
68 |
15 67
|
eqssd |
|