Metamath Proof Explorer


Theorem tosglblem

Description: Lemma for tosglb and xrsclat . (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by NM, 15-Sep-2018)

Ref Expression
Hypotheses tosglb.b B = Base K
tosglb.l < ˙ = < K
tosglb.1 φ K Toset
tosglb.2 φ A B
tosglb.e ˙ = K
Assertion tosglblem φ a B b A a ˙ b c B b A c ˙ b c ˙ a b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d

Proof

Step Hyp Ref Expression
1 tosglb.b B = Base K
2 tosglb.l < ˙ = < K
3 tosglb.1 φ K Toset
4 tosglb.2 φ A B
5 tosglb.e ˙ = K
6 3 ad2antrr φ a B b A K Toset
7 4 adantr φ a B A B
8 7 sselda φ a B b A b B
9 simplr φ a B b A a B
10 1 5 2 tltnle K Toset b B a B b < ˙ a ¬ a ˙ b
11 6 8 9 10 syl3anc φ a B b A b < ˙ a ¬ a ˙ b
12 11 con2bid φ a B b A a ˙ b ¬ b < ˙ a
13 12 ralbidva φ a B b A a ˙ b b A ¬ b < ˙ a
14 4 ad2antrr φ c B b A A B
15 simpr φ c B b A b A
16 14 15 sseldd φ c B b A b B
17 1 5 2 tltnle K Toset b B c B b < ˙ c ¬ c ˙ b
18 3 17 syl3an1 φ b B c B b < ˙ c ¬ c ˙ b
19 18 3com23 φ c B b B b < ˙ c ¬ c ˙ b
20 19 3expa φ c B b B b < ˙ c ¬ c ˙ b
21 20 con2bid φ c B b B c ˙ b ¬ b < ˙ c
22 16 21 syldan φ c B b A c ˙ b ¬ b < ˙ c
23 22 ralbidva φ c B b A c ˙ b b A ¬ b < ˙ c
24 breq1 b = d b < ˙ c d < ˙ c
25 24 notbid b = d ¬ b < ˙ c ¬ d < ˙ c
26 25 cbvralvw b A ¬ b < ˙ c d A ¬ d < ˙ c
27 ralnex d A ¬ d < ˙ c ¬ d A d < ˙ c
28 26 27 bitri b A ¬ b < ˙ c ¬ d A d < ˙ c
29 23 28 bitrdi φ c B b A c ˙ b ¬ d A d < ˙ c
30 29 adantlr φ a B c B b A c ˙ b ¬ d A d < ˙ c
31 3 ad2antrr φ a B c B K Toset
32 simplr φ a B c B a B
33 simpr φ a B c B c B
34 1 5 2 tltnle K Toset a B c B a < ˙ c ¬ c ˙ a
35 31 32 33 34 syl3anc φ a B c B a < ˙ c ¬ c ˙ a
36 35 con2bid φ a B c B c ˙ a ¬ a < ˙ c
37 30 36 imbi12d φ a B c B b A c ˙ b c ˙ a ¬ d A d < ˙ c ¬ a < ˙ c
38 con34b a < ˙ c d A d < ˙ c ¬ d A d < ˙ c ¬ a < ˙ c
39 37 38 bitr4di φ a B c B b A c ˙ b c ˙ a a < ˙ c d A d < ˙ c
40 39 ralbidva φ a B c B b A c ˙ b c ˙ a c B a < ˙ c d A d < ˙ c
41 breq2 b = c a < ˙ b a < ˙ c
42 breq2 b = c d < ˙ b d < ˙ c
43 42 rexbidv b = c d A d < ˙ b d A d < ˙ c
44 41 43 imbi12d b = c a < ˙ b d A d < ˙ b a < ˙ c d A d < ˙ c
45 44 cbvralvw b B a < ˙ b d A d < ˙ b c B a < ˙ c d A d < ˙ c
46 40 45 bitr4di φ a B c B b A c ˙ b c ˙ a b B a < ˙ b d A d < ˙ b
47 13 46 anbi12d φ a B b A a ˙ b c B b A c ˙ b c ˙ a b A ¬ b < ˙ a b B a < ˙ b d A d < ˙ b
48 vex a V
49 vex b V
50 48 49 brcnv a < ˙ -1 b b < ˙ a
51 50 notbii ¬ a < ˙ -1 b ¬ b < ˙ a
52 51 ralbii b A ¬ a < ˙ -1 b b A ¬ b < ˙ a
53 49 48 brcnv b < ˙ -1 a a < ˙ b
54 vex d V
55 49 54 brcnv b < ˙ -1 d d < ˙ b
56 55 rexbii d A b < ˙ -1 d d A d < ˙ b
57 53 56 imbi12i b < ˙ -1 a d A b < ˙ -1 d a < ˙ b d A d < ˙ b
58 57 ralbii b B b < ˙ -1 a d A b < ˙ -1 d b B a < ˙ b d A d < ˙ b
59 52 58 anbi12i b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d b A ¬ b < ˙ a b B a < ˙ b d A d < ˙ b
60 47 59 bitr4di φ a B b A a ˙ b c B b A c ˙ b c ˙ a b A ¬ a < ˙ -1 b b B b < ˙ -1 a d A b < ˙ -1 d