Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of TakeutiZaring p. 37. (Contributed by NM, 5-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | tz7.7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr | |
|
2 | ordfr | |
|
3 | tz7.2 | |
|
4 | 3 | 3exp | |
5 | 1 2 4 | sylc | |
6 | 5 | adantr | |
7 | pssdifn0 | |
|
8 | difss | |
|
9 | tz7.5 | |
|
10 | 8 9 | mp3an2 | |
11 | eldifi | |
|
12 | trss | |
|
13 | difin0ss | |
|
14 | 13 | com12 | |
15 | 11 12 14 | syl56 | |
16 | 1 15 | syl | |
17 | 16 | ad2antrr | |
18 | 17 | imp32 | |
19 | eleq1w | |
|
20 | 19 | biimpcd | |
21 | eldifn | |
|
22 | 20 21 | nsyli | |
23 | 22 | imp | |
24 | 23 | adantll | |
25 | 24 | adantl | |
26 | trel | |
|
27 | 26 | expcomd | |
28 | 27 | imp | |
29 | 28 21 | nsyli | |
30 | 29 | ex | |
31 | 30 | adantld | |
32 | 31 | imp32 | |
33 | 32 | adantll | |
34 | ordwe | |
|
35 | ssel2 | |
|
36 | 35 11 | anim12i | |
37 | wecmpep | |
|
38 | 34 36 37 | syl2an | |
39 | 38 | adantlr | |
40 | 25 33 39 | ecase23d | |
41 | 40 | exp44 | |
42 | 41 | com34 | |
43 | 42 | imp31 | |
44 | 43 | ssrdv | |
45 | 44 | adantrr | |
46 | 18 45 | eqssd | |
47 | 11 | ad2antrl | |
48 | 46 47 | eqeltrrd | |
49 | 48 | rexlimdvaa | |
50 | 10 49 | syl5 | |
51 | 50 | exp4b | |
52 | 51 | com23 | |
53 | 52 | adantrd | |
54 | 53 | pm2.43i | |
55 | 7 54 | syl7 | |
56 | 55 | exp4a | |
57 | 56 | pm2.43d | |
58 | 57 | impd | |
59 | 6 58 | impbid | |