| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtr |
|
| 2 |
|
ordfr |
|
| 3 |
|
tz7.2 |
|
| 4 |
3
|
3exp |
|
| 5 |
1 2 4
|
sylc |
|
| 6 |
5
|
adantr |
|
| 7 |
|
pssdifn0 |
|
| 8 |
|
difss |
|
| 9 |
|
tz7.5 |
|
| 10 |
8 9
|
mp3an2 |
|
| 11 |
|
eldifi |
|
| 12 |
|
trss |
|
| 13 |
|
difin0ss |
|
| 14 |
13
|
com12 |
|
| 15 |
11 12 14
|
syl56 |
|
| 16 |
1 15
|
syl |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
17
|
imp32 |
|
| 19 |
|
eleq1w |
|
| 20 |
19
|
biimpcd |
|
| 21 |
|
eldifn |
|
| 22 |
20 21
|
nsyli |
|
| 23 |
22
|
imp |
|
| 24 |
23
|
adantll |
|
| 25 |
24
|
adantl |
|
| 26 |
|
trel |
|
| 27 |
26
|
expcomd |
|
| 28 |
27
|
imp |
|
| 29 |
28 21
|
nsyli |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
adantld |
|
| 32 |
31
|
imp32 |
|
| 33 |
32
|
adantll |
|
| 34 |
|
ordwe |
|
| 35 |
|
ssel2 |
|
| 36 |
35 11
|
anim12i |
|
| 37 |
|
wecmpep |
|
| 38 |
34 36 37
|
syl2an |
|
| 39 |
38
|
adantlr |
|
| 40 |
25 33 39
|
ecase23d |
|
| 41 |
40
|
exp44 |
|
| 42 |
41
|
com34 |
|
| 43 |
42
|
imp31 |
|
| 44 |
43
|
ssrdv |
|
| 45 |
44
|
adantrr |
|
| 46 |
18 45
|
eqssd |
|
| 47 |
11
|
ad2antrl |
|
| 48 |
46 47
|
eqeltrrd |
|
| 49 |
48
|
rexlimdvaa |
|
| 50 |
10 49
|
syl5 |
|
| 51 |
50
|
exp4b |
|
| 52 |
51
|
com23 |
|
| 53 |
52
|
adantrd |
|
| 54 |
53
|
pm2.43i |
|
| 55 |
7 54
|
syl7 |
|
| 56 |
55
|
exp4a |
|
| 57 |
56
|
pm2.43d |
|
| 58 |
57
|
impd |
|
| 59 |
6 58
|
impbid |
|