Metamath Proof Explorer


Theorem tz7.7

Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of TakeutiZaring p. 37. (Contributed by NM, 5-May-1994)

Ref Expression
Assertion tz7.7 OrdATrBBABABA

Proof

Step Hyp Ref Expression
1 ordtr OrdATrA
2 ordfr OrdAEFrA
3 tz7.2 TrAEFrABABABA
4 3 3exp TrAEFrABABABA
5 1 2 4 sylc OrdABABABA
6 5 adantr OrdATrBBABABA
7 pssdifn0 BABAAB
8 difss ABA
9 tz7.5 OrdAABAABxABABx=
10 8 9 mp3an2 OrdAABxABABx=
11 eldifi xABxA
12 trss TrAxAxA
13 difin0ss ABx=xAxB
14 13 com12 xAABx=xB
15 11 12 14 syl56 TrAxABABx=xB
16 1 15 syl OrdAxABABx=xB
17 16 ad2antrr OrdATrBBAxABABx=xB
18 17 imp32 OrdATrBBAxABABx=xB
19 eleq1w y=xyBxB
20 19 biimpcd yBy=xxB
21 eldifn xAB¬xB
22 20 21 nsyli yBxAB¬y=x
23 22 imp yBxAB¬y=x
24 23 adantll BAyBxAB¬y=x
25 24 adantl OrdATrBBAyBxAB¬y=x
26 trel TrBxyyBxB
27 26 expcomd TrByBxyxB
28 27 imp TrByBxyxB
29 28 21 nsyli TrByBxAB¬xy
30 29 ex TrByBxAB¬xy
31 30 adantld TrBBAyBxAB¬xy
32 31 imp32 TrBBAyBxAB¬xy
33 32 adantll OrdATrBBAyBxAB¬xy
34 ordwe OrdAEWeA
35 ssel2 BAyByA
36 35 11 anim12i BAyBxAByAxA
37 wecmpep EWeAyAxAyxy=xxy
38 34 36 37 syl2an OrdABAyBxAByxy=xxy
39 38 adantlr OrdATrBBAyBxAByxy=xxy
40 25 33 39 ecase23d OrdATrBBAyBxAByx
41 40 exp44 OrdATrBBAyBxAByx
42 41 com34 OrdATrBBAxAByByx
43 42 imp31 OrdATrBBAxAByByx
44 43 ssrdv OrdATrBBAxABBx
45 44 adantrr OrdATrBBAxABABx=Bx
46 18 45 eqssd OrdATrBBAxABABx=x=B
47 11 ad2antrl OrdATrBBAxABABx=xA
48 46 47 eqeltrrd OrdATrBBAxABABx=BA
49 48 rexlimdvaa OrdATrBBAxABABx=BA
50 10 49 syl5 OrdATrBBAOrdAABBA
51 50 exp4b OrdATrBBAOrdAABBA
52 51 com23 OrdATrBOrdABAABBA
53 52 adantrd OrdATrBOrdATrBBAABBA
54 53 pm2.43i OrdATrBBAABBA
55 7 54 syl7 OrdATrBBABABABA
56 55 exp4a OrdATrBBABABABA
57 56 pm2.43d OrdATrBBABABA
58 57 impd OrdATrBBABABA
59 6 58 impbid OrdATrBBABABA