Metamath Proof Explorer


Theorem ulm2

Description: Simplify ulmval when F and G are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses ulm2.z Z=M
ulm2.m φM
ulm2.f φF:ZS
ulm2.b φkZzSFkz=B
ulm2.a φzSGz=A
ulm2.g φG:S
ulm2.s φSV
Assertion ulm2 φFuSGx+jZkjzSBA<x

Proof

Step Hyp Ref Expression
1 ulm2.z Z=M
2 ulm2.m φM
3 ulm2.f φF:ZS
4 ulm2.b φkZzSFkz=B
5 ulm2.a φzSGz=A
6 ulm2.g φG:S
7 ulm2.s φSV
8 ulmval SVFuSGnF:nSG:Sx+jnkjzSFkzGz<x
9 7 8 syl φFuSGnF:nSG:Sx+jnkjzSFkzGz<x
10 3anan12 F:nSG:Sx+jnkjzSFkzGz<xG:SF:nSx+jnkjzSFkzGz<x
11 3 fdmd φdomF=Z
12 fdm F:nSdomF=n
13 11 12 sylan9req φF:nSZ=n
14 1 13 eqtr3id φF:nSM=n
15 2 adantr φF:nSM
16 uz11 MM=nM=n
17 15 16 syl φF:nSM=nM=n
18 14 17 mpbid φF:nSM=n
19 18 eqcomd φF:nSn=M
20 fveq2 n=Mn=M
21 20 1 eqtr4di n=Mn=Z
22 21 feq2d n=MF:nSF:ZS
23 22 biimparc F:ZSn=MF:nS
24 3 23 sylan φn=MF:nS
25 19 24 impbida φF:nSn=M
26 25 anbi1d φF:nSx+jnkjzSFkzGz<xn=Mx+jnkjzSFkzGz<x
27 6 biantrurd φF:nSx+jnkjzSFkzGz<xG:SF:nSx+jnkjzSFkzGz<x
28 simp-4l φn=MjnkjzSφ
29 simpr φn=Mn=M
30 uzid MMM
31 2 30 syl φMM
32 31 1 eleqtrrdi φMZ
33 32 adantr φn=MMZ
34 29 33 eqeltrd φn=MnZ
35 1 uztrn2 nZjnjZ
36 34 35 sylan φn=MjnjZ
37 1 uztrn2 jZkjkZ
38 36 37 sylan φn=MjnkjkZ
39 38 adantr φn=MjnkjzSkZ
40 simpr φn=MjnkjzSzS
41 28 39 40 4 syl12anc φn=MjnkjzSFkz=B
42 28 5 sylancom φn=MjnkjzSGz=A
43 41 42 oveq12d φn=MjnkjzSFkzGz=BA
44 43 fveq2d φn=MjnkjzSFkzGz=BA
45 44 breq1d φn=MjnkjzSFkzGz<xBA<x
46 45 ralbidva φn=MjnkjzSFkzGz<xzSBA<x
47 46 ralbidva φn=MjnkjzSFkzGz<xkjzSBA<x
48 47 rexbidva φn=MjnkjzSFkzGz<xjnkjzSBA<x
49 48 ralbidv φn=Mx+jnkjzSFkzGz<xx+jnkjzSBA<x
50 49 pm5.32da φn=Mx+jnkjzSFkzGz<xn=Mx+jnkjzSBA<x
51 26 27 50 3bitr3d φG:SF:nSx+jnkjzSFkzGz<xn=Mx+jnkjzSBA<x
52 10 51 bitrid φF:nSG:Sx+jnkjzSFkzGz<xn=Mx+jnkjzSBA<x
53 52 rexbidv φnF:nSG:Sx+jnkjzSFkzGz<xnn=Mx+jnkjzSBA<x
54 21 rexeqdv n=MjnkjzSBA<xjZkjzSBA<x
55 54 ralbidv n=Mx+jnkjzSBA<xx+jZkjzSBA<x
56 55 ceqsrexv Mnn=Mx+jnkjzSBA<xx+jZkjzSBA<x
57 2 56 syl φnn=Mx+jnkjzSBA<xx+jZkjzSBA<x
58 9 53 57 3bitrd φFuSGx+jZkjzSBA<x