Description: Simplify ulmval when F and G are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ulm2.z | |
|
ulm2.m | |
||
ulm2.f | |
||
ulm2.b | |
||
ulm2.a | |
||
ulm2.g | |
||
ulm2.s | |
||
Assertion | ulm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulm2.z | |
|
2 | ulm2.m | |
|
3 | ulm2.f | |
|
4 | ulm2.b | |
|
5 | ulm2.a | |
|
6 | ulm2.g | |
|
7 | ulm2.s | |
|
8 | ulmval | |
|
9 | 7 8 | syl | |
10 | 3anan12 | |
|
11 | 3 | fdmd | |
12 | fdm | |
|
13 | 11 12 | sylan9req | |
14 | 1 13 | eqtr3id | |
15 | 2 | adantr | |
16 | uz11 | |
|
17 | 15 16 | syl | |
18 | 14 17 | mpbid | |
19 | 18 | eqcomd | |
20 | fveq2 | |
|
21 | 20 1 | eqtr4di | |
22 | 21 | feq2d | |
23 | 22 | biimparc | |
24 | 3 23 | sylan | |
25 | 19 24 | impbida | |
26 | 25 | anbi1d | |
27 | 6 | biantrurd | |
28 | simp-4l | |
|
29 | simpr | |
|
30 | uzid | |
|
31 | 2 30 | syl | |
32 | 31 1 | eleqtrrdi | |
33 | 32 | adantr | |
34 | 29 33 | eqeltrd | |
35 | 1 | uztrn2 | |
36 | 34 35 | sylan | |
37 | 1 | uztrn2 | |
38 | 36 37 | sylan | |
39 | 38 | adantr | |
40 | simpr | |
|
41 | 28 39 40 4 | syl12anc | |
42 | 28 5 | sylancom | |
43 | 41 42 | oveq12d | |
44 | 43 | fveq2d | |
45 | 44 | breq1d | |
46 | 45 | ralbidva | |
47 | 46 | ralbidva | |
48 | 47 | rexbidva | |
49 | 48 | ralbidv | |
50 | 49 | pm5.32da | |
51 | 26 27 50 | 3bitr3d | |
52 | 10 51 | bitrid | |
53 | 52 | rexbidv | |
54 | 21 | rexeqdv | |
55 | 54 | ralbidv | |
56 | 55 | ceqsrexv | |
57 | 2 56 | syl | |
58 | 9 53 57 | 3bitrd | |