Description: Lemma for ulmshft . (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ulmshft.z | |
|
ulmshft.w | |
||
ulmshft.m | |
||
ulmshft.k | |
||
ulmshft.f | |
||
ulmshft.h | |
||
Assertion | ulmshftlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmshft.z | |
|
2 | ulmshft.w | |
|
3 | ulmshft.m | |
|
4 | ulmshft.k | |
|
5 | ulmshft.f | |
|
6 | ulmshft.h | |
|
7 | 3 | ad2antrr | |
8 | 5 | ad2antrr | |
9 | eqidd | |
|
10 | eqidd | |
|
11 | simplr | |
|
12 | simpr | |
|
13 | 1 7 8 9 10 11 12 | ulmi | |
14 | simpr | |
|
15 | 14 1 | eleqtrdi | |
16 | 4 | ad3antrrr | |
17 | eluzadd | |
|
18 | 15 16 17 | syl2anc | |
19 | 18 2 | eleqtrrdi | |
20 | eluzelz | |
|
21 | 15 20 | syl | |
22 | 21 | adantr | |
23 | 4 | adantr | |
24 | 23 | ad3antrrr | |
25 | simpr | |
|
26 | eluzsub | |
|
27 | 22 24 25 26 | syl3anc | |
28 | fveq2 | |
|
29 | 28 | fveq1d | |
30 | 29 | fvoveq1d | |
31 | 30 | breq1d | |
32 | 31 | ralbidv | |
33 | 32 | rspcv | |
34 | 27 33 | syl | |
35 | 34 | ralrimdva | |
36 | fveq2 | |
|
37 | 36 | raleqdv | |
38 | 37 | rspcev | |
39 | 19 35 38 | syl6an | |
40 | 39 | rexlimdva | |
41 | 13 40 | mpd | |
42 | 41 | ralrimiva | |
43 | 3 4 | zaddcld | |
44 | 43 | adantr | |
45 | 5 | adantr | |
46 | 3 | adantr | |
47 | 4 | adantr | |
48 | simpr | |
|
49 | 48 2 | eleqtrdi | |
50 | eluzsub | |
|
51 | 46 47 49 50 | syl3anc | |
52 | 51 1 | eleqtrrdi | |
53 | 45 52 | ffvelcdmd | |
54 | 6 53 | fmpt3d | |
55 | 54 | adantr | |
56 | 6 | ad2antrr | |
57 | 56 | fveq1d | |
58 | fvoveq1 | |
|
59 | eqid | |
|
60 | fvex | |
|
61 | 58 59 60 | fvmpt | |
62 | 61 | ad2antrl | |
63 | 57 62 | eqtrd | |
64 | 63 | fveq1d | |
65 | eqidd | |
|
66 | ulmcl | |
|
67 | 66 | adantl | |
68 | ulmscl | |
|
69 | 68 | adantl | |
70 | 2 44 55 64 65 67 69 | ulm2 | |
71 | 42 70 | mpbird | |
72 | 71 | ex | |