Metamath Proof Explorer


Theorem ulmshftlem

Description: Lemma for ulmshft . (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses ulmshft.z Z=M
ulmshft.w W=M+K
ulmshft.m φM
ulmshft.k φK
ulmshft.f φF:ZS
ulmshft.h φH=nWFnK
Assertion ulmshftlem φFuSGHuSG

Proof

Step Hyp Ref Expression
1 ulmshft.z Z=M
2 ulmshft.w W=M+K
3 ulmshft.m φM
4 ulmshft.k φK
5 ulmshft.f φF:ZS
6 ulmshft.h φH=nWFnK
7 3 ad2antrr φFuSGx+M
8 5 ad2antrr φFuSGx+F:ZS
9 eqidd φFuSGx+mZzSFmz=Fmz
10 eqidd φFuSGx+zSGz=Gz
11 simplr φFuSGx+FuSG
12 simpr φFuSGx+x+
13 1 7 8 9 10 11 12 ulmi φFuSGx+iZmizSFmzGz<x
14 simpr φFuSGx+iZiZ
15 14 1 eleqtrdi φFuSGx+iZiM
16 4 ad3antrrr φFuSGx+iZK
17 eluzadd iMKi+KM+K
18 15 16 17 syl2anc φFuSGx+iZi+KM+K
19 18 2 eleqtrrdi φFuSGx+iZi+KW
20 eluzelz iMi
21 15 20 syl φFuSGx+iZi
22 21 adantr φFuSGx+iZki+Ki
23 4 adantr φFuSGK
24 23 ad3antrrr φFuSGx+iZki+KK
25 simpr φFuSGx+iZki+Kki+K
26 eluzsub iKki+KkKi
27 22 24 25 26 syl3anc φFuSGx+iZki+KkKi
28 fveq2 m=kKFm=FkK
29 28 fveq1d m=kKFmz=FkKz
30 29 fvoveq1d m=kKFmzGz=FkKzGz
31 30 breq1d m=kKFmzGz<xFkKzGz<x
32 31 ralbidv m=kKzSFmzGz<xzSFkKzGz<x
33 32 rspcv kKimizSFmzGz<xzSFkKzGz<x
34 27 33 syl φFuSGx+iZki+KmizSFmzGz<xzSFkKzGz<x
35 34 ralrimdva φFuSGx+iZmizSFmzGz<xki+KzSFkKzGz<x
36 fveq2 j=i+Kj=i+K
37 36 raleqdv j=i+KkjzSFkKzGz<xki+KzSFkKzGz<x
38 37 rspcev i+KWki+KzSFkKzGz<xjWkjzSFkKzGz<x
39 19 35 38 syl6an φFuSGx+iZmizSFmzGz<xjWkjzSFkKzGz<x
40 39 rexlimdva φFuSGx+iZmizSFmzGz<xjWkjzSFkKzGz<x
41 13 40 mpd φFuSGx+jWkjzSFkKzGz<x
42 41 ralrimiva φFuSGx+jWkjzSFkKzGz<x
43 3 4 zaddcld φM+K
44 43 adantr φFuSGM+K
45 5 adantr φnWF:ZS
46 3 adantr φnWM
47 4 adantr φnWK
48 simpr φnWnW
49 48 2 eleqtrdi φnWnM+K
50 eluzsub MKnM+KnKM
51 46 47 49 50 syl3anc φnWnKM
52 51 1 eleqtrrdi φnWnKZ
53 45 52 ffvelcdmd φnWFnKS
54 6 53 fmpt3d φH:WS
55 54 adantr φFuSGH:WS
56 6 ad2antrr φFuSGkWzSH=nWFnK
57 56 fveq1d φFuSGkWzSHk=nWFnKk
58 fvoveq1 n=kFnK=FkK
59 eqid nWFnK=nWFnK
60 fvex FkKV
61 58 59 60 fvmpt kWnWFnKk=FkK
62 61 ad2antrl φFuSGkWzSnWFnKk=FkK
63 57 62 eqtrd φFuSGkWzSHk=FkK
64 63 fveq1d φFuSGkWzSHkz=FkKz
65 eqidd φFuSGzSGz=Gz
66 ulmcl FuSGG:S
67 66 adantl φFuSGG:S
68 ulmscl FuSGSV
69 68 adantl φFuSGSV
70 2 44 55 64 65 67 69 ulm2 φFuSGHuSGx+jWkjzSFkKzGz<x
71 42 70 mpbird φFuSGHuSG
72 71 ex φFuSGHuSG