Step |
Hyp |
Ref |
Expression |
1 |
|
unblimceq0.0 |
|
2 |
|
unblimceq0.1 |
|
3 |
|
unblimceq0.2 |
|
4 |
|
unblimceq0.3 |
|
5 |
|
1rp |
|
6 |
5
|
a1i |
|
7 |
|
breq2 |
|
8 |
7
|
imbi2d |
|
9 |
8
|
rexralbidv |
|
10 |
9
|
notbid |
|
11 |
10
|
adantl |
|
12 |
|
simprr1 |
|
13 |
|
simprr2 |
|
14 |
12 13
|
jca |
|
15 |
|
1red |
|
16 |
2
|
ad2antrr |
|
17 |
16
|
adantr |
|
18 |
|
simprl |
|
19 |
17 18
|
ffvelrnd |
|
20 |
|
simplr |
|
21 |
20
|
adantr |
|
22 |
19 21
|
subcld |
|
23 |
22
|
abscld |
|
24 |
19
|
abscld |
|
25 |
20
|
abscld |
|
26 |
25
|
adantr |
|
27 |
24 26
|
resubcld |
|
28 |
|
1cnd |
|
29 |
26
|
recnd |
|
30 |
28 29
|
pncand |
|
31 |
|
1red |
|
32 |
31 25
|
readdcld |
|
33 |
32
|
adantr |
|
34 |
|
simprr3 |
|
35 |
33 24 26 34
|
lesub1dd |
|
36 |
30 35
|
eqbrtrrd |
|
37 |
19 21
|
abs2difd |
|
38 |
15 27 23 36 37
|
letrd |
|
39 |
15 23 38
|
lensymd |
|
40 |
14 39
|
jcnd |
|
41 |
|
breq2 |
|
42 |
41
|
3anbi2d |
|
43 |
42
|
rexbidv |
|
44 |
|
breq1 |
|
45 |
44
|
3anbi3d |
|
46 |
45
|
rexbidv |
|
47 |
46
|
ralbidv |
|
48 |
1 2 3 4
|
unblimceq0lem |
|
49 |
48
|
ad2antrr |
|
50 |
|
0lt1 |
|
51 |
50
|
a1i |
|
52 |
20
|
absge0d |
|
53 |
31 25 51 52
|
addgtge0d |
|
54 |
32 53
|
elrpd |
|
55 |
47 49 54
|
rspcdva |
|
56 |
|
simpr |
|
57 |
43 55 56
|
rspcdva |
|
58 |
40 57
|
reximddv |
|
59 |
|
rexnal |
|
60 |
58 59
|
sylib |
|
61 |
60
|
nrexdv |
|
62 |
6 11 61
|
rspcedvd |
|
63 |
|
rexnal |
|
64 |
62 63
|
sylib |
|
65 |
64
|
ex |
|
66 |
|
imnan |
|
67 |
65 66
|
sylib |
|
68 |
2 1 3
|
ellimc3 |
|
69 |
67 68
|
mtbird |
|
70 |
69
|
eq0rdv |
|