Metamath Proof Explorer


Theorem upgrewlkle2

Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021)

Ref Expression
Assertion upgrewlkle2 GUPGraphFGEdgWalksS1<FS2

Proof

Step Hyp Ref Expression
1 eqid iEdgG=iEdgG
2 1 ewlkprop FGEdgWalksSGVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFk
3 fvex iEdgGFk1V
4 hashin iEdgGFk1ViEdgGFk1iEdgGFkiEdgGFk1
5 3 4 ax-mp iEdgGFk1iEdgGFkiEdgGFk1
6 simpl3 GVS0*FWorddomiEdgGGUPGraphk1..^FGUPGraph
7 upgruhgr GUPGraphGUHGraph
8 1 uhgrfun GUHGraphFuniEdgG
9 7 8 syl GUPGraphFuniEdgG
10 9 funfnd GUPGraphiEdgGFndomiEdgG
11 10 3ad2ant3 GVS0*FWorddomiEdgGGUPGraphiEdgGFndomiEdgG
12 11 adantr GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFndomiEdgG
13 elfzofz k1..^Fk1F
14 fz1fzo0m1 k1Fk10..^F
15 13 14 syl k1..^Fk10..^F
16 wrdsymbcl FWorddomiEdgGk10..^FFk1domiEdgG
17 15 16 sylan2 FWorddomiEdgGk1..^FFk1domiEdgG
18 17 3ad2antl2 GVS0*FWorddomiEdgGGUPGraphk1..^FFk1domiEdgG
19 eqid VtxG=VtxG
20 19 1 upgrle GUPGraphiEdgGFndomiEdgGFk1domiEdgGiEdgGFk12
21 6 12 18 20 syl3anc GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFk12
22 3 inex1 iEdgGFk1iEdgGFkV
23 hashxrcl iEdgGFk1iEdgGFkViEdgGFk1iEdgGFk*
24 22 23 ax-mp iEdgGFk1iEdgGFk*
25 hashxrcl iEdgGFk1ViEdgGFk1*
26 3 25 ax-mp iEdgGFk1*
27 2re 2
28 27 rexri 2*
29 24 26 28 3pm3.2i iEdgGFk1iEdgGFk*iEdgGFk1*2*
30 29 a1i GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFk1iEdgGFk*iEdgGFk1*2*
31 xrletr iEdgGFk1iEdgGFk*iEdgGFk1*2*iEdgGFk1iEdgGFkiEdgGFk1iEdgGFk12iEdgGFk1iEdgGFk2
32 30 31 syl GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFk1iEdgGFkiEdgGFk1iEdgGFk12iEdgGFk1iEdgGFk2
33 21 32 mpan2d GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFk1iEdgGFkiEdgGFk1iEdgGFk1iEdgGFk2
34 5 33 mpi GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFk1iEdgGFk2
35 xnn0xr S0*S*
36 24 a1i S0*iEdgGFk1iEdgGFk*
37 28 a1i S0*2*
38 xrletr S*iEdgGFk1iEdgGFk*2*SiEdgGFk1iEdgGFkiEdgGFk1iEdgGFk2S2
39 35 36 37 38 syl3anc S0*SiEdgGFk1iEdgGFkiEdgGFk1iEdgGFk2S2
40 39 expcomd S0*iEdgGFk1iEdgGFk2SiEdgGFk1iEdgGFkS2
41 40 adantl GVS0*iEdgGFk1iEdgGFk2SiEdgGFk1iEdgGFkS2
42 41 3ad2ant1 GVS0*FWorddomiEdgGGUPGraphiEdgGFk1iEdgGFk2SiEdgGFk1iEdgGFkS2
43 42 adantr GVS0*FWorddomiEdgGGUPGraphk1..^FiEdgGFk1iEdgGFk2SiEdgGFk1iEdgGFkS2
44 34 43 mpd GVS0*FWorddomiEdgGGUPGraphk1..^FSiEdgGFk1iEdgGFkS2
45 44 ralimdva GVS0*FWorddomiEdgGGUPGraphk1..^FSiEdgGFk1iEdgGFkk1..^FS2
46 45 3exp GVS0*FWorddomiEdgGGUPGraphk1..^FSiEdgGFk1iEdgGFkk1..^FS2
47 46 com34 GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkGUPGraphk1..^FS2
48 47 3imp GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkGUPGraphk1..^FS2
49 lencl FWorddomiEdgGF0
50 1zzd F01
51 nn0z F0F
52 fzon 1FF11..^F=
53 50 51 52 syl2anc F0F11..^F=
54 nn0re F0F
55 1red F01
56 54 55 lenltd F0F1¬1<F
57 53 56 bitr3d F01..^F=¬1<F
58 57 biimpd F01..^F=¬1<F
59 58 necon2ad F01<F1..^F
60 rspn0 1..^Fk1..^FS2S2
61 59 60 syl6com 1<FF0k1..^FS2S2
62 61 com3l F0k1..^FS21<FS2
63 49 62 syl FWorddomiEdgGk1..^FS21<FS2
64 63 3ad2ant2 GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkk1..^FS21<FS2
65 48 64 syld GVS0*FWorddomiEdgGk1..^FSiEdgGFk1iEdgGFkGUPGraph1<FS2
66 2 65 syl FGEdgWalksSGUPGraph1<FS2
67 66 3imp21 GUPGraphFGEdgWalksS1<FS2