Metamath Proof Explorer


Theorem upgrex

Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)

Ref Expression
Hypotheses isupgr.v V=VtxG
isupgr.e E=iEdgG
Assertion upgrex GUPGraphEFnAFAxVyVEF=xy

Proof

Step Hyp Ref Expression
1 isupgr.v V=VtxG
2 isupgr.e E=iEdgG
3 1 2 upgrn0 GUPGraphEFnAFAEF
4 n0 EFxxEF
5 3 4 sylib GUPGraphEFnAFAxxEF
6 simp1 GUPGraphEFnAFAGUPGraph
7 fndm EFnAdomE=A
8 7 eqcomd EFnAA=domE
9 8 eleq2d EFnAFAFdomE
10 9 biimpd EFnAFAFdomE
11 10 a1i GUPGraphEFnAFAFdomE
12 11 3imp GUPGraphEFnAFAFdomE
13 1 2 upgrss GUPGraphFdomEEFV
14 6 12 13 syl2anc GUPGraphEFnAFAEFV
15 14 sselda GUPGraphEFnAFAxEFxV
16 15 adantr GUPGraphEFnAFAxEFEFx=xV
17 simpr GUPGraphEFnAFAxEFEFx=EFx=
18 ssdif0 EFxEFx=
19 17 18 sylibr GUPGraphEFnAFAxEFEFx=EFx
20 simpr GUPGraphEFnAFAxEFxEF
21 20 snssd GUPGraphEFnAFAxEFxEF
22 21 adantr GUPGraphEFnAFAxEFEFx=xEF
23 19 22 eqssd GUPGraphEFnAFAxEFEFx=EF=x
24 preq2 y=xxy=xx
25 dfsn2 x=xx
26 24 25 eqtr4di y=xxy=x
27 26 rspceeqv xVEF=xyVEF=xy
28 16 23 27 syl2anc GUPGraphEFnAFAxEFEFx=yVEF=xy
29 n0 EFxyyEFx
30 14 adantr GUPGraphEFnAFAxEFyEFxEFV
31 simprr GUPGraphEFnAFAxEFyEFxyEFx
32 31 eldifad GUPGraphEFnAFAxEFyEFxyEF
33 30 32 sseldd GUPGraphEFnAFAxEFyEFxyV
34 1 2 upgrfi GUPGraphEFnAFAEFFin
35 34 adantr GUPGraphEFnAFAxEFyEFxEFFin
36 simprl GUPGraphEFnAFAxEFyEFxxEF
37 36 32 prssd GUPGraphEFnAFAxEFyEFxxyEF
38 fvex EFV
39 ssdomg EFVxyEFxyEF
40 38 37 39 mpsyl GUPGraphEFnAFAxEFyEFxxyEF
41 1 2 upgrle GUPGraphEFnAFAEF2
42 41 adantr GUPGraphEFnAFAxEFyEFxEF2
43 eldifsni yEFxyx
44 43 ad2antll GUPGraphEFnAFAxEFyEFxyx
45 44 necomd GUPGraphEFnAFAxEFyEFxxy
46 hashprg xVyVxyxy=2
47 46 el2v xyxy=2
48 45 47 sylib GUPGraphEFnAFAxEFyEFxxy=2
49 42 48 breqtrrd GUPGraphEFnAFAxEFyEFxEFxy
50 prfi xyFin
51 hashdom EFFinxyFinEFxyEFxy
52 35 50 51 sylancl GUPGraphEFnAFAxEFyEFxEFxyEFxy
53 49 52 mpbid GUPGraphEFnAFAxEFyEFxEFxy
54 sbth xyEFEFxyxyEF
55 40 53 54 syl2anc GUPGraphEFnAFAxEFyEFxxyEF
56 fisseneq EFFinxyEFxyEFxy=EF
57 35 37 55 56 syl3anc GUPGraphEFnAFAxEFyEFxxy=EF
58 57 eqcomd GUPGraphEFnAFAxEFyEFxEF=xy
59 33 58 jca GUPGraphEFnAFAxEFyEFxyVEF=xy
60 59 expr GUPGraphEFnAFAxEFyEFxyVEF=xy
61 60 eximdv GUPGraphEFnAFAxEFyyEFxyyVEF=xy
62 61 imp GUPGraphEFnAFAxEFyyEFxyyVEF=xy
63 df-rex yVEF=xyyyVEF=xy
64 62 63 sylibr GUPGraphEFnAFAxEFyyEFxyVEF=xy
65 29 64 sylan2b GUPGraphEFnAFAxEFEFxyVEF=xy
66 28 65 pm2.61dane GUPGraphEFnAFAxEFyVEF=xy
67 15 66 jca GUPGraphEFnAFAxEFxVyVEF=xy
68 67 ex GUPGraphEFnAFAxEFxVyVEF=xy
69 68 eximdv GUPGraphEFnAFAxxEFxxVyVEF=xy
70 5 69 mpd GUPGraphEFnAFAxxVyVEF=xy
71 df-rex xVyVEF=xyxxVyVEF=xy
72 70 71 sylibr GUPGraphEFnAFAxVyVEF=xy