Metamath Proof Explorer


Theorem ustuqtop4

Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 N = p X ran v U v p
Assertion ustuqtop4 U UnifOn X p X a N p b N p q b a N q

Proof

Step Hyp Ref Expression
1 utopustuq.1 N = p X ran v U v p
2 simplll U UnifOn X p X w U u U u u w U UnifOn X p X
3 simplr U UnifOn X p X w U u U u u w u U
4 eqid u p = u p
5 imaeq1 w = u w p = u p
6 5 rspceeqv u U u p = u p w U u p = w p
7 4 6 mpan2 u U w U u p = w p
8 7 adantl U UnifOn X p X u U w U u p = w p
9 imaexg u U u p V
10 1 ustuqtoplem U UnifOn X p X u p V u p N p w U u p = w p
11 9 10 sylan2 U UnifOn X p X u U u p N p w U u p = w p
12 8 11 mpbird U UnifOn X p X u U u p N p
13 2 3 12 syl2anc U UnifOn X p X w U u U u u w u p N p
14 simp-5l U UnifOn X p X w U u U u u w q u p U UnifOn X
15 2 simpld U UnifOn X p X w U u U u u w U UnifOn X
16 simp-4r U UnifOn X p X w U u U u u w p X
17 ustimasn U UnifOn X u U p X u p X
18 15 3 16 17 syl3anc U UnifOn X p X w U u U u u w u p X
19 18 sselda U UnifOn X p X w U u U u u w q u p q X
20 14 19 jca U UnifOn X p X w U u U u u w q u p U UnifOn X q X
21 simplr U UnifOn X p X w U u U u u w q u p r u q q u p
22 simp-6l U UnifOn X p X w U u U u u w q u p r u q U UnifOn X
23 simp-4r U UnifOn X p X w U u U u u w q u p r u q u U
24 ustrel U UnifOn X u U Rel u
25 22 23 24 syl2anc U UnifOn X p X w U u U u u w q u p r u q Rel u
26 elrelimasn Rel u q u p p u q
27 25 26 syl U UnifOn X p X w U u U u u w q u p r u q q u p p u q
28 21 27 mpbid U UnifOn X p X w U u U u u w q u p r u q p u q
29 simpr U UnifOn X p X w U u U u u w q u p r u q r u q
30 elrelimasn Rel u r u q q u r
31 25 30 syl U UnifOn X p X w U u U u u w q u p r u q r u q q u r
32 29 31 mpbid U UnifOn X p X w U u U u u w q u p r u q q u r
33 vex p V
34 vex r V
35 33 34 brco p u u r q p u q q u r
36 35 biimpri q p u q q u r p u u r
37 36 19.23bi p u q q u r p u u r
38 28 32 37 syl2anc U UnifOn X p X w U u U u u w q u p r u q p u u r
39 simpllr U UnifOn X p X w U u U u u w q u p r u q u u w
40 39 ssbrd U UnifOn X p X w U u U u u w q u p r u q p u u r p w r
41 38 40 mpd U UnifOn X p X w U u U u u w q u p r u q p w r
42 simp-5r U UnifOn X p X w U u U u u w q u p r u q w U
43 ustrel U UnifOn X w U Rel w
44 22 42 43 syl2anc U UnifOn X p X w U u U u u w q u p r u q Rel w
45 elrelimasn Rel w r w p p w r
46 44 45 syl U UnifOn X p X w U u U u u w q u p r u q r w p p w r
47 41 46 mpbird U UnifOn X p X w U u U u u w q u p r u q r w p
48 47 ex U UnifOn X p X w U u U u u w q u p r u q r w p
49 48 ssrdv U UnifOn X p X w U u U u u w q u p u q w p
50 simp-4r U UnifOn X p X w U u U u u w q u p w U
51 16 adantr U UnifOn X p X w U u U u u w q u p p X
52 ustimasn U UnifOn X w U p X w p X
53 14 50 51 52 syl3anc U UnifOn X p X w U u U u u w q u p w p X
54 20 49 53 3jca U UnifOn X p X w U u U u u w q u p U UnifOn X q X u q w p w p X
55 simpllr U UnifOn X p X w U u U u u w q u p u U
56 eqidd u U u q = u q
57 imaeq1 w = u w q = u q
58 57 rspceeqv u U u q = u q w U u q = w q
59 56 58 mpdan u U w U u q = w q
60 59 adantl U UnifOn X q X u U w U u q = w q
61 imaexg u U u q V
62 1 ustuqtoplem U UnifOn X q X u q V u q N q w U u q = w q
63 61 62 sylan2 U UnifOn X q X u U u q N q w U u q = w q
64 60 63 mpbird U UnifOn X q X u U u q N q
65 14 19 55 64 syl21anc U UnifOn X p X w U u U u u w q u p u q N q
66 54 65 jca U UnifOn X p X w U u U u u w q u p U UnifOn X q X u q w p w p X u q N q
67 imaexg w U w p V
68 sseq2 b = w p u q b u q w p
69 sseq1 b = w p b X w p X
70 68 69 3anbi23d b = w p U UnifOn X q X u q b b X U UnifOn X q X u q w p w p X
71 70 anbi1d b = w p U UnifOn X q X u q b b X u q N q U UnifOn X q X u q w p w p X u q N q
72 71 anbi1d b = w p U UnifOn X q X u q b b X u q N q u U U UnifOn X q X u q w p w p X u q N q u U
73 eleq1 b = w p b N q w p N q
74 72 73 imbi12d b = w p U UnifOn X q X u q b b X u q N q u U b N q U UnifOn X q X u q w p w p X u q N q u U w p N q
75 sseq1 a = u q a b u q b
76 75 3anbi2d a = u q U UnifOn X q X a b b X U UnifOn X q X u q b b X
77 eleq1 a = u q a N q u q N q
78 76 77 anbi12d a = u q U UnifOn X q X a b b X a N q U UnifOn X q X u q b b X u q N q
79 78 imbi1d a = u q U UnifOn X q X a b b X a N q b N q U UnifOn X q X u q b b X u q N q b N q
80 eleq1 p = q p X q X
81 80 anbi2d p = q U UnifOn X p X U UnifOn X q X
82 81 3anbi1d p = q U UnifOn X p X a b b X U UnifOn X q X a b b X
83 fveq2 p = q N p = N q
84 83 eleq2d p = q a N p a N q
85 82 84 anbi12d p = q U UnifOn X p X a b b X a N p U UnifOn X q X a b b X a N q
86 83 eleq2d p = q b N p b N q
87 85 86 imbi12d p = q U UnifOn X p X a b b X a N p b N p U UnifOn X q X a b b X a N q b N q
88 1 ustuqtop1 U UnifOn X p X a b b X a N p b N p
89 87 88 chvarvv U UnifOn X q X a b b X a N q b N q
90 79 89 vtoclg u q V U UnifOn X q X u q b b X u q N q b N q
91 61 90 syl u U U UnifOn X q X u q b b X u q N q b N q
92 91 impcom U UnifOn X q X u q b b X u q N q u U b N q
93 74 92 vtoclg w p V U UnifOn X q X u q w p w p X u q N q u U w p N q
94 67 93 syl w U U UnifOn X q X u q w p w p X u q N q u U w p N q
95 94 impcom U UnifOn X q X u q w p w p X u q N q u U w U w p N q
96 66 55 50 95 syl21anc U UnifOn X p X w U u U u u w q u p w p N q
97 96 ralrimiva U UnifOn X p X w U u U u u w q u p w p N q
98 raleq b = u p q b w p N q q u p w p N q
99 98 rspcev u p N p q u p w p N q b N p q b w p N q
100 13 97 99 syl2anc U UnifOn X p X w U u U u u w b N p q b w p N q
101 ustexhalf U UnifOn X w U u U u u w
102 101 adantlr U UnifOn X p X w U u U u u w
103 100 102 r19.29a U UnifOn X p X w U b N p q b w p N q
104 103 adantr U UnifOn X p X w U a = w p b N p q b w p N q
105 eleq1 a = w p a N q w p N q
106 105 rexralbidv a = w p b N p q b a N q b N p q b w p N q
107 106 adantl U UnifOn X p X w U a = w p b N p q b a N q b N p q b w p N q
108 104 107 mpbird U UnifOn X p X w U a = w p b N p q b a N q
109 108 adantllr U UnifOn X p X a N p w U a = w p b N p q b a N q
110 vex a V
111 1 ustuqtoplem U UnifOn X p X a V a N p w U a = w p
112 110 111 mpan2 U UnifOn X p X a N p w U a = w p
113 112 biimpa U UnifOn X p X a N p w U a = w p
114 109 113 r19.29a U UnifOn X p X a N p b N p q b a N q