Metamath Proof Explorer


Theorem utop3cls

Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypothesis utoptop.1 J = unifTop U
Assertion utop3cls U UnifOn X M X × X V U V -1 = V cls J × t J M V M V

Proof

Step Hyp Ref Expression
1 utoptop.1 J = unifTop U
2 relxp Rel X × X
3 utoptop U UnifOn X unifTop U Top
4 1 3 eqeltrid U UnifOn X J Top
5 txtop J Top J Top J × t J Top
6 4 4 5 syl2anc U UnifOn X J × t J Top
7 6 ad3antrrr U UnifOn X M X × X V U V -1 = V z cls J × t J M J × t J Top
8 simpllr U UnifOn X M X × X V U V -1 = V z cls J × t J M M X × X
9 utoptopon U UnifOn X unifTop U TopOn X
10 1 9 eqeltrid U UnifOn X J TopOn X
11 toponuni J TopOn X X = J
12 10 11 syl U UnifOn X X = J
13 12 sqxpeqd U UnifOn X X × X = J × J
14 eqid J = J
15 14 14 txuni J Top J Top J × J = J × t J
16 4 4 15 syl2anc U UnifOn X J × J = J × t J
17 13 16 eqtrd U UnifOn X X × X = J × t J
18 17 ad3antrrr U UnifOn X M X × X V U V -1 = V z cls J × t J M X × X = J × t J
19 8 18 sseqtrd U UnifOn X M X × X V U V -1 = V z cls J × t J M M J × t J
20 eqid J × t J = J × t J
21 20 clsss3 J × t J Top M J × t J cls J × t J M J × t J
22 7 19 21 syl2anc U UnifOn X M X × X V U V -1 = V z cls J × t J M cls J × t J M J × t J
23 22 18 sseqtrrd U UnifOn X M X × X V U V -1 = V z cls J × t J M cls J × t J M X × X
24 simpr U UnifOn X M X × X V U V -1 = V z cls J × t J M z cls J × t J M
25 23 24 sseldd U UnifOn X M X × X V U V -1 = V z cls J × t J M z X × X
26 1st2nd Rel X × X z X × X z = 1 st z 2 nd z
27 2 25 26 sylancr U UnifOn X M X × X V U V -1 = V z cls J × t J M z = 1 st z 2 nd z
28 simp-4l U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M U UnifOn X
29 simpr1l U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M V U
30 29 3anassrs U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M V U
31 ustrel U UnifOn X V U Rel V
32 28 30 31 syl2anc U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M Rel V
33 simpr U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M r V 1 st z × V 2 nd z M
34 elin r V 1 st z × V 2 nd z M r V 1 st z × V 2 nd z r M
35 33 34 sylib U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M r V 1 st z × V 2 nd z r M
36 35 simpld U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M r V 1 st z × V 2 nd z
37 xp1st r V 1 st z × V 2 nd z 1 st r V 1 st z
38 36 37 syl U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 1 st r V 1 st z
39 elrelimasn Rel V 1 st r V 1 st z 1 st z V 1 st r
40 39 biimpa Rel V 1 st r V 1 st z 1 st z V 1 st r
41 32 38 40 syl2anc U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 1 st z V 1 st r
42 simp-4r U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M M X × X
43 xpss X × X V × V
44 42 43 sstrdi U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M M V × V
45 df-rel Rel M M V × V
46 44 45 sylibr U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M Rel M
47 35 simprd U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M r M
48 1st2ndbr Rel M r M 1 st r M 2 nd r
49 46 47 48 syl2anc U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 1 st r M 2 nd r
50 xp2nd r V 1 st z × V 2 nd z 2 nd r V 2 nd z
51 36 50 syl U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 2 nd r V 2 nd z
52 elrelimasn Rel V 2 nd r V 2 nd z 2 nd z V 2 nd r
53 52 biimpa Rel V 2 nd r V 2 nd z 2 nd z V 2 nd r
54 32 51 53 syl2anc U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 2 nd z V 2 nd r
55 simpr1r U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M V -1 = V
56 55 3anassrs U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M V -1 = V
57 breq V -1 = V 2 nd r V -1 2 nd z 2 nd r V 2 nd z
58 fvex 2 nd r V
59 fvex 2 nd z V
60 58 59 brcnv 2 nd r V -1 2 nd z 2 nd z V 2 nd r
61 57 60 bitr3di V -1 = V 2 nd r V 2 nd z 2 nd z V 2 nd r
62 56 61 syl U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 2 nd r V 2 nd z 2 nd z V 2 nd r
63 54 62 mpbird U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 2 nd r V 2 nd z
64 fvex 1 st z V
65 fvex 1 st r V
66 brcogw 1 st z V 2 nd r V 1 st r V 1 st z V 1 st r 1 st r M 2 nd r 1 st z M V 2 nd r
67 66 ex 1 st z V 2 nd r V 1 st r V 1 st z V 1 st r 1 st r M 2 nd r 1 st z M V 2 nd r
68 64 58 65 67 mp3an 1 st z V 1 st r 1 st r M 2 nd r 1 st z M V 2 nd r
69 brcogw 1 st z V 2 nd z V 2 nd r V 1 st z M V 2 nd r 2 nd r V 2 nd z 1 st z V M V 2 nd z
70 69 ex 1 st z V 2 nd z V 2 nd r V 1 st z M V 2 nd r 2 nd r V 2 nd z 1 st z V M V 2 nd z
71 64 59 58 70 mp3an 1 st z M V 2 nd r 2 nd r V 2 nd z 1 st z V M V 2 nd z
72 68 71 sylan 1 st z V 1 st r 1 st r M 2 nd r 2 nd r V 2 nd z 1 st z V M V 2 nd z
73 41 49 63 72 syl21anc U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 1 st z V M V 2 nd z
74 73 ralrimiva U UnifOn X M X × X V U V -1 = V z cls J × t J M r V 1 st z × V 2 nd z M 1 st z V M V 2 nd z
75 simplll U UnifOn X M X × X V U V -1 = V z cls J × t J M U UnifOn X
76 simplrl U UnifOn X M X × X V U V -1 = V z cls J × t J M V U
77 4 3ad2ant1 U UnifOn X V U z X × X J Top
78 xp1st z X × X 1 st z X
79 1 utopsnnei U UnifOn X V U 1 st z X V 1 st z nei J 1 st z
80 78 79 syl3an3 U UnifOn X V U z X × X V 1 st z nei J 1 st z
81 xp2nd z X × X 2 nd z X
82 1 utopsnnei U UnifOn X V U 2 nd z X V 2 nd z nei J 2 nd z
83 81 82 syl3an3 U UnifOn X V U z X × X V 2 nd z nei J 2 nd z
84 14 14 neitx J Top J Top V 1 st z nei J 1 st z V 2 nd z nei J 2 nd z V 1 st z × V 2 nd z nei J × t J 1 st z × 2 nd z
85 77 77 80 83 84 syl22anc U UnifOn X V U z X × X V 1 st z × V 2 nd z nei J × t J 1 st z × 2 nd z
86 1st2nd2 z X × X z = 1 st z 2 nd z
87 86 sneqd z X × X z = 1 st z 2 nd z
88 64 59 xpsn 1 st z × 2 nd z = 1 st z 2 nd z
89 87 88 eqtr4di z X × X z = 1 st z × 2 nd z
90 89 fveq2d z X × X nei J × t J z = nei J × t J 1 st z × 2 nd z
91 90 3ad2ant3 U UnifOn X V U z X × X nei J × t J z = nei J × t J 1 st z × 2 nd z
92 85 91 eleqtrrd U UnifOn X V U z X × X V 1 st z × V 2 nd z nei J × t J z
93 75 76 25 92 syl3anc U UnifOn X M X × X V U V -1 = V z cls J × t J M V 1 st z × V 2 nd z nei J × t J z
94 20 neindisj J × t J Top M J × t J z cls J × t J M V 1 st z × V 2 nd z nei J × t J z V 1 st z × V 2 nd z M
95 7 19 24 93 94 syl22anc U UnifOn X M X × X V U V -1 = V z cls J × t J M V 1 st z × V 2 nd z M
96 r19.3rzv V 1 st z × V 2 nd z M 1 st z V M V 2 nd z r V 1 st z × V 2 nd z M 1 st z V M V 2 nd z
97 95 96 syl U UnifOn X M X × X V U V -1 = V z cls J × t J M 1 st z V M V 2 nd z r V 1 st z × V 2 nd z M 1 st z V M V 2 nd z
98 74 97 mpbird U UnifOn X M X × X V U V -1 = V z cls J × t J M 1 st z V M V 2 nd z
99 df-br 1 st z V M V 2 nd z 1 st z 2 nd z V M V
100 98 99 sylib U UnifOn X M X × X V U V -1 = V z cls J × t J M 1 st z 2 nd z V M V
101 27 100 eqeltrd U UnifOn X M X × X V U V -1 = V z cls J × t J M z V M V
102 101 ex U UnifOn X M X × X V U V -1 = V z cls J × t J M z V M V
103 102 ssrdv U UnifOn X M X × X V U V -1 = V cls J × t J M V M V