Metamath Proof Explorer


Theorem utopreg

Description: All Hausdorff uniform spaces are regular. Proposition 3 of BourbakiTop1 p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018)

Ref Expression
Hypothesis utopreg.1 J = unifTop U
Assertion utopreg U UnifOn X J Haus J Reg

Proof

Step Hyp Ref Expression
1 utopreg.1 J = unifTop U
2 utoptop U UnifOn X unifTop U Top
3 2 adantr U UnifOn X J Haus unifTop U Top
4 1 3 eqeltrid U UnifOn X J Haus J Top
5 simp-4l U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v U UnifOn X J Haus a J x a
6 4 ad2antrr U UnifOn X J Haus a J x a J Top
7 5 6 syl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v J Top
8 simplr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v w U
9 simp-4l U UnifOn X J Haus a J x a w U U UnifOn X
10 simpr U UnifOn X J Haus a J x a w U w U
11 4 ad3antrrr U UnifOn X J Haus a J x a w U J Top
12 simpllr U UnifOn X J Haus a J x a w U a J
13 eqid J = J
14 13 eltopss J Top a J a J
15 11 12 14 syl2anc U UnifOn X J Haus a J x a w U a J
16 utopbas U UnifOn X X = unifTop U
17 1 unieqi J = unifTop U
18 16 17 eqtr4di U UnifOn X X = J
19 9 18 syl U UnifOn X J Haus a J x a w U X = J
20 15 19 sseqtrrd U UnifOn X J Haus a J x a w U a X
21 simplr U UnifOn X J Haus a J x a w U x a
22 20 21 sseldd U UnifOn X J Haus a J x a w U x X
23 1 utopsnnei U UnifOn X w U x X w x nei J x
24 9 10 22 23 syl3anc U UnifOn X J Haus a J x a w U w x nei J x
25 5 8 24 syl2anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v w x nei J x
26 neii2 J Top w x nei J x b J x b b w x
27 7 25 26 syl2anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x
28 simprl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x x b
29 vex x V
30 29 snss x b x b
31 28 30 sylibr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x x b
32 7 ad2antrr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x J Top
33 simplll U UnifOn X J Haus a J x a U UnifOn X
34 5 33 syl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v U UnifOn X
35 34 ad2antrr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x U UnifOn X
36 8 ad2antrr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x w U
37 simplr U UnifOn X J Haus a J x a a J
38 6 37 14 syl2anc U UnifOn X J Haus a J x a a J
39 33 18 syl U UnifOn X J Haus a J x a X = J
40 38 39 sseqtrrd U UnifOn X J Haus a J x a a X
41 simpr U UnifOn X J Haus a J x a x a
42 40 41 sseldd U UnifOn X J Haus a J x a x X
43 42 ad6antr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x x X
44 ustimasn U UnifOn X w U x X w x X
45 35 36 43 44 syl3anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x w x X
46 35 18 syl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x X = J
47 45 46 sseqtrd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x w x J
48 simprr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x b w x
49 13 clsss J Top w x J b w x cls J b cls J w x
50 32 47 48 49 syl3anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x cls J b cls J w x
51 ustssxp U UnifOn X w U w X × X
52 34 8 51 syl2anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v w X × X
53 34 18 syl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v X = J
54 53 sqxpeqd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v X × X = J × J
55 52 54 sseqtrd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v w J × J
56 5 38 syl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v a J
57 simp-5r U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v x a
58 56 57 sseldd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v x J
59 13 13 imasncls J Top J Top w J × J x J cls J w x cls J × t J w x
60 7 7 55 58 59 syl22anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v cls J w x cls J × t J w x
61 simprl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v w -1 = w
62 1 utop3cls U UnifOn X w X × X w U w -1 = w cls J × t J w w w w
63 34 52 8 61 62 syl22anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v cls J × t J w w w w
64 simprr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v w w w v
65 63 64 sstrd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v cls J × t J w v
66 imass1 cls J × t J w v cls J × t J w x v x
67 65 66 syl U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v cls J × t J w x v x
68 60 67 sstrd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v cls J w x v x
69 68 ad2antrr U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x cls J w x v x
70 50 69 sstrd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x cls J b v x
71 simp-5r U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x a = v x
72 70 71 sseqtrrd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x cls J b a
73 31 72 jca U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x x b cls J b a
74 73 ex U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x x b cls J b a
75 74 reximdva U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b b w x b J x b cls J b a
76 27 75 mpd U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v b J x b cls J b a
77 simp-5l U UnifOn X J Haus a J x a v U a = v x U UnifOn X
78 simplr U UnifOn X J Haus a J x a v U a = v x v U
79 ustex3sym U UnifOn X v U w U w -1 = w w w w v
80 77 78 79 syl2anc U UnifOn X J Haus a J x a v U a = v x w U w -1 = w w w w v
81 76 80 r19.29a U UnifOn X J Haus a J x a v U a = v x b J x b cls J b a
82 opnneip J Top a J x a a nei J x
83 6 37 41 82 syl3anc U UnifOn X J Haus a J x a a nei J x
84 1 utopsnneip U UnifOn X x X nei J x = ran v U v x
85 33 42 84 syl2anc U UnifOn X J Haus a J x a nei J x = ran v U v x
86 83 85 eleqtrd U UnifOn X J Haus a J x a a ran v U v x
87 eqid v U v x = v U v x
88 87 elrnmpt a J a ran v U v x v U a = v x
89 37 88 syl U UnifOn X J Haus a J x a a ran v U v x v U a = v x
90 86 89 mpbid U UnifOn X J Haus a J x a v U a = v x
91 81 90 r19.29a U UnifOn X J Haus a J x a b J x b cls J b a
92 91 ralrimiva U UnifOn X J Haus a J x a b J x b cls J b a
93 92 ralrimiva U UnifOn X J Haus a J x a b J x b cls J b a
94 isreg J Reg J Top a J x a b J x b cls J b a
95 4 93 94 sylanbrc U UnifOn X J Haus J Reg