| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utopreg.1 |
|
| 2 |
|
utoptop |
|
| 3 |
2
|
adantr |
|
| 4 |
1 3
|
eqeltrid |
|
| 5 |
|
simp-4l |
|
| 6 |
4
|
ad2antrr |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
simplr |
|
| 9 |
|
simp-4l |
|
| 10 |
|
simpr |
|
| 11 |
4
|
ad3antrrr |
|
| 12 |
|
simpllr |
|
| 13 |
|
eqid |
|
| 14 |
13
|
eltopss |
|
| 15 |
11 12 14
|
syl2anc |
|
| 16 |
|
utopbas |
|
| 17 |
1
|
unieqi |
|
| 18 |
16 17
|
eqtr4di |
|
| 19 |
9 18
|
syl |
|
| 20 |
15 19
|
sseqtrrd |
|
| 21 |
|
simplr |
|
| 22 |
20 21
|
sseldd |
|
| 23 |
1
|
utopsnnei |
|
| 24 |
9 10 22 23
|
syl3anc |
|
| 25 |
5 8 24
|
syl2anc |
|
| 26 |
|
neii2 |
|
| 27 |
7 25 26
|
syl2anc |
|
| 28 |
|
simprl |
|
| 29 |
|
vex |
|
| 30 |
29
|
snss |
|
| 31 |
28 30
|
sylibr |
|
| 32 |
7
|
ad2antrr |
|
| 33 |
|
simplll |
|
| 34 |
5 33
|
syl |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
8
|
ad2antrr |
|
| 37 |
|
simplr |
|
| 38 |
6 37 14
|
syl2anc |
|
| 39 |
33 18
|
syl |
|
| 40 |
38 39
|
sseqtrrd |
|
| 41 |
|
simpr |
|
| 42 |
40 41
|
sseldd |
|
| 43 |
42
|
ad6antr |
|
| 44 |
|
ustimasn |
|
| 45 |
35 36 43 44
|
syl3anc |
|
| 46 |
35 18
|
syl |
|
| 47 |
45 46
|
sseqtrd |
|
| 48 |
|
simprr |
|
| 49 |
13
|
clsss |
|
| 50 |
32 47 48 49
|
syl3anc |
|
| 51 |
|
ustssxp |
|
| 52 |
34 8 51
|
syl2anc |
|
| 53 |
34 18
|
syl |
|
| 54 |
53
|
sqxpeqd |
|
| 55 |
52 54
|
sseqtrd |
|
| 56 |
5 38
|
syl |
|
| 57 |
|
simp-5r |
|
| 58 |
56 57
|
sseldd |
|
| 59 |
13 13
|
imasncls |
|
| 60 |
7 7 55 58 59
|
syl22anc |
|
| 61 |
|
simprl |
|
| 62 |
1
|
utop3cls |
|
| 63 |
34 52 8 61 62
|
syl22anc |
|
| 64 |
|
simprr |
|
| 65 |
63 64
|
sstrd |
|
| 66 |
|
imass1 |
|
| 67 |
65 66
|
syl |
|
| 68 |
60 67
|
sstrd |
|
| 69 |
68
|
ad2antrr |
|
| 70 |
50 69
|
sstrd |
|
| 71 |
|
simp-5r |
|
| 72 |
70 71
|
sseqtrrd |
|
| 73 |
31 72
|
jca |
|
| 74 |
73
|
ex |
|
| 75 |
74
|
reximdva |
|
| 76 |
27 75
|
mpd |
|
| 77 |
|
simp-5l |
|
| 78 |
|
simplr |
|
| 79 |
|
ustex3sym |
|
| 80 |
77 78 79
|
syl2anc |
|
| 81 |
76 80
|
r19.29a |
|
| 82 |
|
opnneip |
|
| 83 |
6 37 41 82
|
syl3anc |
|
| 84 |
1
|
utopsnneip |
|
| 85 |
33 42 84
|
syl2anc |
|
| 86 |
83 85
|
eleqtrd |
|
| 87 |
|
eqid |
|
| 88 |
87
|
elrnmpt |
|
| 89 |
37 88
|
syl |
|
| 90 |
86 89
|
mpbid |
|
| 91 |
81 90
|
r19.29a |
|
| 92 |
91
|
ralrimiva |
|
| 93 |
92
|
ralrimiva |
|
| 94 |
|
isreg |
|
| 95 |
4 93 94
|
sylanbrc |
|