| Step |
Hyp |
Ref |
Expression |
| 1 |
|
utoptop.1 |
|- J = ( unifTop ` U ) |
| 2 |
|
relxp |
|- Rel ( X X. X ) |
| 3 |
|
utoptop |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. Top ) |
| 4 |
1 3
|
eqeltrid |
|- ( U e. ( UnifOn ` X ) -> J e. Top ) |
| 5 |
|
txtop |
|- ( ( J e. Top /\ J e. Top ) -> ( J tX J ) e. Top ) |
| 6 |
4 4 5
|
syl2anc |
|- ( U e. ( UnifOn ` X ) -> ( J tX J ) e. Top ) |
| 7 |
6
|
ad3antrrr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( J tX J ) e. Top ) |
| 8 |
|
simpllr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> M C_ ( X X. X ) ) |
| 9 |
|
utoptopon |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |
| 10 |
1 9
|
eqeltrid |
|- ( U e. ( UnifOn ` X ) -> J e. ( TopOn ` X ) ) |
| 11 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
| 12 |
10 11
|
syl |
|- ( U e. ( UnifOn ` X ) -> X = U. J ) |
| 13 |
12
|
sqxpeqd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) = ( U. J X. U. J ) ) |
| 14 |
|
eqid |
|- U. J = U. J |
| 15 |
14 14
|
txuni |
|- ( ( J e. Top /\ J e. Top ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 16 |
4 4 15
|
syl2anc |
|- ( U e. ( UnifOn ` X ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 17 |
13 16
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) = U. ( J tX J ) ) |
| 18 |
17
|
ad3antrrr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( X X. X ) = U. ( J tX J ) ) |
| 19 |
8 18
|
sseqtrd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> M C_ U. ( J tX J ) ) |
| 20 |
|
eqid |
|- U. ( J tX J ) = U. ( J tX J ) |
| 21 |
20
|
clsss3 |
|- ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ U. ( J tX J ) ) |
| 22 |
7 19 21
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ U. ( J tX J ) ) |
| 23 |
22 18
|
sseqtrrd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ ( X X. X ) ) |
| 24 |
|
simpr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z e. ( ( cls ` ( J tX J ) ) ` M ) ) |
| 25 |
23 24
|
sseldd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z e. ( X X. X ) ) |
| 26 |
|
1st2nd |
|- ( ( Rel ( X X. X ) /\ z e. ( X X. X ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 27 |
2 25 26
|
sylancr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 28 |
|
simp-4l |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> U e. ( UnifOn ` X ) ) |
| 29 |
|
simpr1l |
|- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( ( V e. U /\ `' V = V ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) ) -> V e. U ) |
| 30 |
29
|
3anassrs |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> V e. U ) |
| 31 |
|
ustrel |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> Rel V ) |
| 32 |
28 30 31
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> Rel V ) |
| 33 |
|
simpr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) |
| 34 |
|
elin |
|- ( r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) <-> ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) /\ r e. M ) ) |
| 35 |
33 34
|
sylib |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) /\ r e. M ) ) |
| 36 |
35
|
simpld |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) ) |
| 37 |
|
xp1st |
|- ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) -> ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) ) |
| 38 |
36 37
|
syl |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) ) |
| 39 |
|
elrelimasn |
|- ( Rel V -> ( ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) <-> ( 1st ` z ) V ( 1st ` r ) ) ) |
| 40 |
39
|
biimpa |
|- ( ( Rel V /\ ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 41 |
32 38 40
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 42 |
|
simp-4r |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> M C_ ( X X. X ) ) |
| 43 |
|
xpss |
|- ( X X. X ) C_ ( _V X. _V ) |
| 44 |
42 43
|
sstrdi |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> M C_ ( _V X. _V ) ) |
| 45 |
|
df-rel |
|- ( Rel M <-> M C_ ( _V X. _V ) ) |
| 46 |
44 45
|
sylibr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> Rel M ) |
| 47 |
35
|
simprd |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> r e. M ) |
| 48 |
|
1st2ndbr |
|- ( ( Rel M /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 49 |
46 47 48
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 50 |
|
xp2nd |
|- ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) -> ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) ) |
| 51 |
36 50
|
syl |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) ) |
| 52 |
|
elrelimasn |
|- ( Rel V -> ( ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) ) |
| 53 |
52
|
biimpa |
|- ( ( Rel V /\ ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) ) -> ( 2nd ` z ) V ( 2nd ` r ) ) |
| 54 |
32 51 53
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 2nd ` z ) V ( 2nd ` r ) ) |
| 55 |
|
simpr1r |
|- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( ( V e. U /\ `' V = V ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) ) -> `' V = V ) |
| 56 |
55
|
3anassrs |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> `' V = V ) |
| 57 |
|
breq |
|- ( `' V = V -> ( ( 2nd ` r ) `' V ( 2nd ` z ) <-> ( 2nd ` r ) V ( 2nd ` z ) ) ) |
| 58 |
|
fvex |
|- ( 2nd ` r ) e. _V |
| 59 |
|
fvex |
|- ( 2nd ` z ) e. _V |
| 60 |
58 59
|
brcnv |
|- ( ( 2nd ` r ) `' V ( 2nd ` z ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) |
| 61 |
57 60
|
bitr3di |
|- ( `' V = V -> ( ( 2nd ` r ) V ( 2nd ` z ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) ) |
| 62 |
56 61
|
syl |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( ( 2nd ` r ) V ( 2nd ` z ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) ) |
| 63 |
54 62
|
mpbird |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
| 64 |
|
fvex |
|- ( 1st ` z ) e. _V |
| 65 |
|
fvex |
|- ( 1st ` r ) e. _V |
| 66 |
|
brcogw |
|- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) /\ ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
| 67 |
66
|
ex |
|- ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) -> ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) ) |
| 68 |
64 58 65 67
|
mp3an |
|- ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
| 69 |
|
brcogw |
|- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) /\ ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 70 |
69
|
ex |
|- ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) -> ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) ) |
| 71 |
64 59 58 70
|
mp3an |
|- ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 72 |
68 71
|
sylan |
|- ( ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 73 |
41 49 63 72
|
syl21anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 74 |
73
|
ralrimiva |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> A. r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 75 |
|
simplll |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> U e. ( UnifOn ` X ) ) |
| 76 |
|
simplrl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> V e. U ) |
| 77 |
4
|
3ad2ant1 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> J e. Top ) |
| 78 |
|
xp1st |
|- ( z e. ( X X. X ) -> ( 1st ` z ) e. X ) |
| 79 |
1
|
utopsnnei |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 1st ` z ) e. X ) -> ( V " { ( 1st ` z ) } ) e. ( ( nei ` J ) ` { ( 1st ` z ) } ) ) |
| 80 |
78 79
|
syl3an3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( V " { ( 1st ` z ) } ) e. ( ( nei ` J ) ` { ( 1st ` z ) } ) ) |
| 81 |
|
xp2nd |
|- ( z e. ( X X. X ) -> ( 2nd ` z ) e. X ) |
| 82 |
1
|
utopsnnei |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 2nd ` z ) e. X ) -> ( V " { ( 2nd ` z ) } ) e. ( ( nei ` J ) ` { ( 2nd ` z ) } ) ) |
| 83 |
81 82
|
syl3an3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( V " { ( 2nd ` z ) } ) e. ( ( nei ` J ) ` { ( 2nd ` z ) } ) ) |
| 84 |
14 14
|
neitx |
|- ( ( ( J e. Top /\ J e. Top ) /\ ( ( V " { ( 1st ` z ) } ) e. ( ( nei ` J ) ` { ( 1st ` z ) } ) /\ ( V " { ( 2nd ` z ) } ) e. ( ( nei ` J ) ` { ( 2nd ` z ) } ) ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 85 |
77 77 80 83 84
|
syl22anc |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 86 |
|
1st2nd2 |
|- ( z e. ( X X. X ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 87 |
86
|
sneqd |
|- ( z e. ( X X. X ) -> { z } = { <. ( 1st ` z ) , ( 2nd ` z ) >. } ) |
| 88 |
64 59
|
xpsn |
|- ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) = { <. ( 1st ` z ) , ( 2nd ` z ) >. } |
| 89 |
87 88
|
eqtr4di |
|- ( z e. ( X X. X ) -> { z } = ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) |
| 90 |
89
|
fveq2d |
|- ( z e. ( X X. X ) -> ( ( nei ` ( J tX J ) ) ` { z } ) = ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 91 |
90
|
3ad2ant3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( ( nei ` ( J tX J ) ) ` { z } ) = ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 92 |
85 91
|
eleqtrrd |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { z } ) ) |
| 93 |
75 76 25 92
|
syl3anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { z } ) ) |
| 94 |
20
|
neindisj |
|- ( ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) ) /\ ( z e. ( ( cls ` ( J tX J ) ) ` M ) /\ ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { z } ) ) ) -> ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) =/= (/) ) |
| 95 |
7 19 24 93 94
|
syl22anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) =/= (/) ) |
| 96 |
|
r19.3rzv |
|- ( ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) =/= (/) -> ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> A. r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) ) |
| 97 |
95 96
|
syl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> A. r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) ) |
| 98 |
74 97
|
mpbird |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 99 |
|
df-br |
|- ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
| 100 |
98 99
|
sylib |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
| 101 |
27 100
|
eqeltrd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z e. ( V o. ( M o. V ) ) ) |
| 102 |
101
|
ex |
|- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) -> ( z e. ( ( cls ` ( J tX J ) ) ` M ) -> z e. ( V o. ( M o. V ) ) ) ) |
| 103 |
102
|
ssrdv |
|- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ ( V o. ( M o. V ) ) ) |