Metamath Proof Explorer


Theorem vtxdgoddnumeven

Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2) in section I.1 in Bollobas p. 4. (Contributed by AV, 22-Dec-2021)

Ref Expression
Hypotheses finsumvtxdgeven.v V = Vtx G
finsumvtxdgeven.i I = iEdg G
finsumvtxdgeven.d D = VtxDeg G
Assertion vtxdgoddnumeven G UPGraph V Fin I Fin 2 v V | ¬ 2 D v

Proof

Step Hyp Ref Expression
1 finsumvtxdgeven.v V = Vtx G
2 finsumvtxdgeven.i I = iEdg G
3 finsumvtxdgeven.d D = VtxDeg G
4 1 2 3 finsumvtxdgeven G UPGraph V Fin I Fin 2 w V D w
5 incom v V | ¬ 2 D v v V | 2 D v = v V | 2 D v v V | ¬ 2 D v
6 rabnc v V | 2 D v v V | ¬ 2 D v =
7 5 6 eqtri v V | ¬ 2 D v v V | 2 D v =
8 7 a1i G UPGraph V Fin I Fin v V | ¬ 2 D v v V | 2 D v =
9 rabxm V = v V | 2 D v v V | ¬ 2 D v
10 9 equncomi V = v V | ¬ 2 D v v V | 2 D v
11 10 a1i G UPGraph V Fin I Fin V = v V | ¬ 2 D v v V | 2 D v
12 simp2 G UPGraph V Fin I Fin V Fin
13 3 fveq1i D w = VtxDeg G w
14 dmfi I Fin dom I Fin
15 14 3ad2ant3 G UPGraph V Fin I Fin dom I Fin
16 eqid dom I = dom I
17 1 2 16 vtxdgfisnn0 dom I Fin w V VtxDeg G w 0
18 15 17 sylan G UPGraph V Fin I Fin w V VtxDeg G w 0
19 18 nn0cnd G UPGraph V Fin I Fin w V VtxDeg G w
20 13 19 eqeltrid G UPGraph V Fin I Fin w V D w
21 8 11 12 20 fsumsplit G UPGraph V Fin I Fin w V D w = w v V | ¬ 2 D v D w + w v V | 2 D v D w
22 21 breq2d G UPGraph V Fin I Fin 2 w V D w 2 w v V | ¬ 2 D v D w + w v V | 2 D v D w
23 rabfi V Fin v V | ¬ 2 D v Fin
24 23 3ad2ant2 G UPGraph V Fin I Fin v V | ¬ 2 D v Fin
25 elrabi w v V | ¬ 2 D v w V
26 15 25 17 syl2an G UPGraph V Fin I Fin w v V | ¬ 2 D v VtxDeg G w 0
27 26 nn0zd G UPGraph V Fin I Fin w v V | ¬ 2 D v VtxDeg G w
28 13 27 eqeltrid G UPGraph V Fin I Fin w v V | ¬ 2 D v D w
29 24 28 fsumzcl G UPGraph V Fin I Fin w v V | ¬ 2 D v D w
30 29 adantr G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v w v V | ¬ 2 D v D w
31 fveq2 v = w D v = D w
32 31 breq2d v = w 2 D v 2 D w
33 32 notbid v = w ¬ 2 D v ¬ 2 D w
34 33 elrab w v V | ¬ 2 D v w V ¬ 2 D w
35 34 simprbi w v V | ¬ 2 D v ¬ 2 D w
36 35 adantl G UPGraph V Fin I Fin w v V | ¬ 2 D v ¬ 2 D w
37 24 28 36 sumodd G UPGraph V Fin I Fin 2 v V | ¬ 2 D v 2 w v V | ¬ 2 D v D w
38 37 notbid G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v ¬ 2 w v V | ¬ 2 D v D w
39 38 biimpa G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v ¬ 2 w v V | ¬ 2 D v D w
40 rabfi V Fin v V | 2 D v Fin
41 40 3ad2ant2 G UPGraph V Fin I Fin v V | 2 D v Fin
42 elrabi w v V | 2 D v w V
43 15 42 17 syl2an G UPGraph V Fin I Fin w v V | 2 D v VtxDeg G w 0
44 43 nn0zd G UPGraph V Fin I Fin w v V | 2 D v VtxDeg G w
45 13 44 eqeltrid G UPGraph V Fin I Fin w v V | 2 D v D w
46 41 45 fsumzcl G UPGraph V Fin I Fin w v V | 2 D v D w
47 46 adantr G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v w v V | 2 D v D w
48 32 elrab w v V | 2 D v w V 2 D w
49 48 simprbi w v V | 2 D v 2 D w
50 49 adantl G UPGraph V Fin I Fin w v V | 2 D v 2 D w
51 41 45 50 sumeven G UPGraph V Fin I Fin 2 w v V | 2 D v D w
52 51 adantr G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v 2 w v V | 2 D v D w
53 opeo w v V | ¬ 2 D v D w ¬ 2 w v V | ¬ 2 D v D w w v V | 2 D v D w 2 w v V | 2 D v D w ¬ 2 w v V | ¬ 2 D v D w + w v V | 2 D v D w
54 30 39 47 52 53 syl22anc G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v ¬ 2 w v V | ¬ 2 D v D w + w v V | 2 D v D w
55 54 ex G UPGraph V Fin I Fin ¬ 2 v V | ¬ 2 D v ¬ 2 w v V | ¬ 2 D v D w + w v V | 2 D v D w
56 55 con4d G UPGraph V Fin I Fin 2 w v V | ¬ 2 D v D w + w v V | 2 D v D w 2 v V | ¬ 2 D v
57 22 56 sylbid G UPGraph V Fin I Fin 2 w V D w 2 v V | ¬ 2 D v
58 4 57 mpd G UPGraph V Fin I Fin 2 v V | ¬ 2 D v