Metamath Proof Explorer


Theorem wallispi2

Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis wallispi2.1 V=n24nn!42n!22n+1
Assertion wallispi2 Vπ2

Proof

Step Hyp Ref Expression
1 wallispi2.1 V=n24nn!42n!22n+1
2 eqid k2k2k12k2k+1=k2k2k12k2k+1
3 1cnd n1
4 2cnd n2
5 nncn nn
6 4 5 mulcld n2n
7 6 3 addcld n2n+1
8 elnnuz nn1
9 8 biimpi nn1
10 eqidd m1nk2k42k2k12=k2k42k2k12
11 simpr m1nk=mk=m
12 11 oveq2d m1nk=m2k=2m
13 12 oveq1d m1nk=m2k4=2m4
14 12 oveq1d m1nk=m2k1=2m1
15 12 14 oveq12d m1nk=m2k2k1=2m2m1
16 15 oveq1d m1nk=m2k2k12=2m2m12
17 13 16 oveq12d m1nk=m2k42k2k12=2m42m2m12
18 elfznn m1nm
19 2cnd m1n2
20 18 nncnd m1nm
21 19 20 mulcld m1n2m
22 4nn0 40
23 22 a1i m1n40
24 21 23 expcld m1n2m4
25 1cnd m1n1
26 21 25 subcld m1n2m1
27 21 26 mulcld m1n2m2m1
28 27 sqcld m1n2m2m12
29 2ne0 20
30 29 a1i m1n20
31 18 nnne0d m1nm0
32 19 20 30 31 mulne0d m1n2m0
33 1red m1n1
34 2re 2
35 34 a1i m1n2
36 35 33 remulcld m1n21
37 18 nnred m1nm
38 35 37 remulcld m1n2m
39 1lt2 1<2
40 39 a1i m1n1<2
41 2t1e2 21=2
42 40 41 breqtrrdi m1n1<21
43 0le2 02
44 43 a1i m1n02
45 elfzle1 m1n1m
46 33 37 35 44 45 lemul2ad m1n212m
47 33 36 38 42 46 ltletrd m1n1<2m
48 33 47 gtned m1n2m1
49 21 25 48 subne0d m1n2m10
50 21 26 32 49 mulne0d m1n2m2m10
51 2z 2
52 51 a1i m1n2
53 27 50 52 expne0d m1n2m2m120
54 24 28 53 divcld m1n2m42m2m12
55 10 17 18 54 fvmptd m1nk2k42k2k12m=2m42m2m12
56 55 54 eqeltrd m1nk2k42k2k12m
57 56 adantl nm1nk2k42k2k12m
58 mulcl mwmw
59 58 adantl nmwmw
60 9 57 59 seqcl nseq1×k2k42k2k12n
61 2nn 2
62 61 a1i n2
63 id nn
64 62 63 nnmulcld n2n
65 64 peano2nnd n2n+1
66 65 nnne0d n2n+10
67 3 7 60 66 div32d n12n+1seq1×k2k42k2k12n=1seq1×k2k42k2k12n2n+1
68 60 7 66 divcld nseq1×k2k42k2k12n2n+1
69 68 mullidd n1seq1×k2k42k2k12n2n+1=seq1×k2k42k2k12n2n+1
70 wallispi2lem2 nseq1×k2k42k2k12n=24nn!42n!2
71 70 oveq1d nseq1×k2k42k2k12n2n+1=24nn!42n!22n+1
72 67 69 71 3eqtrd n12n+1seq1×k2k42k2k12n=24nn!42n!22n+1
73 72 mpteq2ia n12n+1seq1×k2k42k2k12n=n24nn!42n!22n+1
74 wallispi2lem1 nseq1×k2k2k12k2k+1n=12n+1seq1×k2k42k2k12n
75 74 mpteq2ia nseq1×k2k2k12k2k+1n=n12n+1seq1×k2k42k2k12n
76 73 75 1 3eqtr4ri V=nseq1×k2k2k12k2k+1n
77 2 76 wallispi Vπ2