Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimpnfv.m | |
|
xlimpnfv.z | |
||
xlimpnfv.f | |
||
Assertion | xlimpnfv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfv.m | |
|
2 | xlimpnfv.z | |
|
3 | xlimpnfv.f | |
|
4 | 1 | ad2antrr | |
5 | 3 | ad2antrr | |
6 | simplr | |
|
7 | simpr | |
|
8 | 4 2 5 6 7 | xlimpnfvlem1 | |
9 | 8 | ralrimiva | |
10 | nfv | |
|
11 | nfcv | |
|
12 | nfcv | |
|
13 | nfra1 | |
|
14 | 12 13 | nfrexw | |
15 | 11 14 | nfralw | |
16 | 10 15 | nfan | |
17 | nfv | |
|
18 | nfcv | |
|
19 | nfre1 | |
|
20 | 18 19 | nfralw | |
21 | 17 20 | nfan | |
22 | 1 | adantr | |
23 | 3 | adantr | |
24 | nfv | |
|
25 | 21 24 | nfan | |
26 | simp-4r | |
|
27 | rexr | |
|
28 | 26 27 | syl | |
29 | peano2re | |
|
30 | 29 | rexrd | |
31 | 26 30 | syl | |
32 | 3 | 3ad2ant1 | |
33 | 2 | uztrn2 | |
34 | 33 | 3adant1 | |
35 | 32 34 | ffvelcdmd | |
36 | 35 | ad5ant134 | |
37 | 26 | ltp1d | |
38 | simpr | |
|
39 | 28 31 36 37 38 | xrltletrd | |
40 | 39 | ex | |
41 | 40 | ralimdva | |
42 | 41 | imp | |
43 | 42 | adantl3r | |
44 | 43 | 3impa | |
45 | 29 | adantl | |
46 | simpl | |
|
47 | breq1 | |
|
48 | 47 | ralbidv | |
49 | 48 | rexbidv | |
50 | 49 | rspcva | |
51 | 45 46 50 | syl2anc | |
52 | 51 | adantll | |
53 | 25 44 52 | reximdd | |
54 | 53 | ralrimiva | |
55 | 16 21 22 2 23 54 | xlimpnfvlem2 | |
56 | 9 55 | impbida | |