Metamath Proof Explorer


Theorem xlimpnfv

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnfv.m φM
xlimpnfv.z Z=M
xlimpnfv.f φF:Z*
Assertion xlimpnfv φF*+∞xjZkjxFk

Proof

Step Hyp Ref Expression
1 xlimpnfv.m φM
2 xlimpnfv.z Z=M
3 xlimpnfv.f φF:Z*
4 1 ad2antrr φF*+∞xM
5 3 ad2antrr φF*+∞xF:Z*
6 simplr φF*+∞xF*+∞
7 simpr φF*+∞xx
8 4 2 5 6 7 xlimpnfvlem1 φF*+∞xjZkjxFk
9 8 ralrimiva φF*+∞xjZkjxFk
10 nfv kφ
11 nfcv _k
12 nfcv _kZ
13 nfra1 kkjxFk
14 12 13 nfrexw kjZkjxFk
15 11 14 nfralw kxjZkjxFk
16 10 15 nfan kφxjZkjxFk
17 nfv jφ
18 nfcv _j
19 nfre1 jjZkjxFk
20 18 19 nfralw jxjZkjxFk
21 17 20 nfan jφxjZkjxFk
22 1 adantr φxjZkjxFkM
23 3 adantr φxjZkjxFkF:Z*
24 nfv jy
25 21 24 nfan jφxjZkjxFky
26 simp-4r φyjZkjy+1Fky
27 rexr yy*
28 26 27 syl φyjZkjy+1Fky*
29 peano2re yy+1
30 29 rexrd yy+1*
31 26 30 syl φyjZkjy+1Fky+1*
32 3 3ad2ant1 φjZkjF:Z*
33 2 uztrn2 jZkjkZ
34 33 3adant1 φjZkjkZ
35 32 34 ffvelcdmd φjZkjFk*
36 35 ad5ant134 φyjZkjy+1FkFk*
37 26 ltp1d φyjZkjy+1Fky<y+1
38 simpr φyjZkjy+1Fky+1Fk
39 28 31 36 37 38 xrltletrd φyjZkjy+1Fky<Fk
40 39 ex φyjZkjy+1Fky<Fk
41 40 ralimdva φyjZkjy+1Fkkjy<Fk
42 41 imp φyjZkjy+1Fkkjy<Fk
43 42 adantl3r φxjZkjxFkyjZkjy+1Fkkjy<Fk
44 43 3impa φxjZkjxFkyjZkjy+1Fkkjy<Fk
45 29 adantl xjZkjxFkyy+1
46 simpl xjZkjxFkyxjZkjxFk
47 breq1 x=y+1xFky+1Fk
48 47 ralbidv x=y+1kjxFkkjy+1Fk
49 48 rexbidv x=y+1jZkjxFkjZkjy+1Fk
50 49 rspcva y+1xjZkjxFkjZkjy+1Fk
51 45 46 50 syl2anc xjZkjxFkyjZkjy+1Fk
52 51 adantll φxjZkjxFkyjZkjy+1Fk
53 25 44 52 reximdd φxjZkjxFkyjZkjy<Fk
54 53 ralrimiva φxjZkjxFkyjZkjy<Fk
55 16 21 22 2 23 54 xlimpnfvlem2 φxjZkjxFkF*+∞
56 9 55 impbida φF*+∞xjZkjxFk