Metamath Proof Explorer


Theorem xrge0adddir

Description: Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017)

Ref Expression
Assertion xrge0adddir A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C

Proof

Step Hyp Ref Expression
1 iccssxr 0 +∞ *
2 simpl1 A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ A 0 +∞
3 1 2 sselid A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ A *
4 simpl2 A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ B 0 +∞
5 1 4 sselid A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ B *
6 rge0ssre 0 +∞
7 simpr A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ C 0 +∞
8 6 7 sselid A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ C
9 xadddir A * B * C A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
10 3 5 8 9 syl3anc A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
11 simpll1 A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A 0 +∞
12 1 11 sselid A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A *
13 simpll2 A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A B 0 +∞
14 1 13 sselid A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A B *
15 12 14 xaddcld A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A + 𝑒 B *
16 simpr A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A 0 < A
17 xrge0addgt0 A 0 +∞ B 0 +∞ 0 < A 0 < A + 𝑒 B
18 11 13 16 17 syl21anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A 0 < A + 𝑒 B
19 xmulpnf1 A + 𝑒 B * 0 < A + 𝑒 B A + 𝑒 B 𝑒 +∞ = +∞
20 15 18 19 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A + 𝑒 B 𝑒 +∞ = +∞
21 oveq2 C = +∞ A + 𝑒 B 𝑒 C = A + 𝑒 B 𝑒 +∞
22 21 ad2antlr A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A + 𝑒 B 𝑒 C = A + 𝑒 B 𝑒 +∞
23 simpll3 A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A C 0 +∞
24 ge0xmulcl B 0 +∞ C 0 +∞ B 𝑒 C 0 +∞
25 13 23 24 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A B 𝑒 C 0 +∞
26 1 25 sselid A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A B 𝑒 C *
27 xrge0neqmnf B 𝑒 C 0 +∞ B 𝑒 C −∞
28 25 27 syl A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A B 𝑒 C −∞
29 xaddpnf2 B 𝑒 C * B 𝑒 C −∞ +∞ + 𝑒 B 𝑒 C = +∞
30 26 28 29 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A +∞ + 𝑒 B 𝑒 C = +∞
31 20 22 30 3eqtr4d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A + 𝑒 B 𝑒 C = +∞ + 𝑒 B 𝑒 C
32 oveq2 C = +∞ A 𝑒 C = A 𝑒 +∞
33 32 ad2antlr A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A 𝑒 C = A 𝑒 +∞
34 xmulpnf1 A * 0 < A A 𝑒 +∞ = +∞
35 12 16 34 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A 𝑒 +∞ = +∞
36 33 35 eqtrd A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A 𝑒 C = +∞
37 36 oveq1d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A 𝑒 C + 𝑒 B 𝑒 C = +∞ + 𝑒 B 𝑒 C
38 31 37 eqtr4d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
39 simpll3 A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A C 0 +∞
40 1 39 sselid A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A C *
41 xmul02 C * 0 𝑒 C = 0
42 40 41 syl A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 𝑒 C = 0
43 42 oveq1d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 𝑒 C + 𝑒 B 𝑒 C = 0 + 𝑒 B 𝑒 C
44 oveq1 0 = A 0 𝑒 C = A 𝑒 C
45 44 adantl A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 𝑒 C = A 𝑒 C
46 45 oveq1d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 𝑒 C + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
47 simpll2 A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A B 0 +∞
48 1 47 sselid A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A B *
49 48 40 xmulcld A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A B 𝑒 C *
50 xaddid2 B 𝑒 C * 0 + 𝑒 B 𝑒 C = B 𝑒 C
51 49 50 syl A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 + 𝑒 B 𝑒 C = B 𝑒 C
52 43 46 51 3eqtr3d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A A 𝑒 C + 𝑒 B 𝑒 C = B 𝑒 C
53 xaddid2 B * 0 + 𝑒 B = B
54 48 53 syl A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 + 𝑒 B = B
55 54 oveq1d A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 + 𝑒 B 𝑒 C = B 𝑒 C
56 oveq1 0 = A 0 + 𝑒 B = A + 𝑒 B
57 56 oveq1d 0 = A 0 + 𝑒 B 𝑒 C = A + 𝑒 B 𝑒 C
58 57 adantl A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A 0 + 𝑒 B 𝑒 C = A + 𝑒 B 𝑒 C
59 52 55 58 3eqtr2rd A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 = A A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
60 0xr 0 *
61 60 a1i A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 *
62 simpl1 A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ A 0 +∞
63 1 62 sselid A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ A *
64 pnfxr +∞ *
65 64 a1i A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ +∞ *
66 iccgelb 0 * +∞ * A 0 +∞ 0 A
67 61 65 62 66 syl3anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 A
68 xrleloe 0 * A * 0 A 0 < A 0 = A
69 68 biimpa 0 * A * 0 A 0 < A 0 = A
70 61 63 67 69 syl21anc A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ 0 < A 0 = A
71 38 59 70 mpjaodan A 0 +∞ B 0 +∞ C 0 +∞ C = +∞ A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
72 0lepnf 0 +∞
73 eliccelico 0 * +∞ * 0 +∞ C 0 +∞ C 0 +∞ C = +∞
74 60 64 72 73 mp3an C 0 +∞ C 0 +∞ C = +∞
75 74 3anbi3i A 0 +∞ B 0 +∞ C 0 +∞ A 0 +∞ B 0 +∞ C 0 +∞ C = +∞
76 75 simp3bi A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ C = +∞
77 10 71 76 mpjaodan A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C