| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|
| 2 |
|
simpllr |
|
| 3 |
|
simpr |
|
| 4 |
2 3
|
uneq12d |
|
| 5 |
|
unrab |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
simpll |
|
| 10 |
9
|
crngringd |
|
| 11 |
|
simplr |
|
| 12 |
|
simpr |
|
| 13 |
6 7 8 10 11 12
|
idlsrgmulrcl |
|
| 14 |
|
sseq1 |
|
| 15 |
14
|
rabbidv |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
16
|
adantl |
|
| 18 |
|
eqid |
|
| 19 |
9
|
ad2antrr |
|
| 20 |
11
|
ad2antrr |
|
| 21 |
12
|
ad2antrr |
|
| 22 |
6 7 8 18 19 20 21
|
idlsrgmulrss1 |
|
| 23 |
|
simpr |
|
| 24 |
22 23
|
sstrd |
|
| 25 |
10
|
ad2antrr |
|
| 26 |
11
|
ad2antrr |
|
| 27 |
12
|
ad2antrr |
|
| 28 |
6 7 8 18 25 26 27
|
idlsrgmulrss2 |
|
| 29 |
|
simpr |
|
| 30 |
28 29
|
sstrd |
|
| 31 |
24 30
|
jaodan |
|
| 32 |
|
eqid |
|
| 33 |
10
|
ad2antrr |
|
| 34 |
|
simplr |
|
| 35 |
11
|
ad2antrr |
|
| 36 |
12
|
ad2antrr |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
37 7
|
lidlss |
|
| 40 |
35 39
|
syl |
|
| 41 |
37 7
|
lidlss |
|
| 42 |
36 41
|
syl |
|
| 43 |
37 38 32 33 40 42
|
ringlsmss |
|
| 44 |
|
eqid |
|
| 45 |
44 37
|
rspssid |
|
| 46 |
33 43 45
|
syl2anc |
|
| 47 |
6 7 8 38 32 33 35 36
|
idlsrgmulrval |
|
| 48 |
46 47
|
sseqtrrd |
|
| 49 |
|
simpr |
|
| 50 |
48 49
|
sstrd |
|
| 51 |
32 33 34 35 36 50
|
idlmulssprm |
|
| 52 |
31 51
|
impbida |
|
| 53 |
52
|
rabbidva |
|
| 54 |
13 17 53
|
rspcedvd |
|
| 55 |
|
fvex |
|
| 56 |
55
|
rabex |
|
| 57 |
56
|
a1i |
|
| 58 |
1 54 57
|
elrnmptd |
|
| 59 |
5 58
|
eqeltrid |
|
| 60 |
59
|
adantlr |
|
| 61 |
60
|
adantr |
|
| 62 |
4 61
|
eqeltrd |
|
| 63 |
62
|
adantl4r |
|
| 64 |
55
|
rabex |
|
| 65 |
1 64
|
elrnmpti |
|
| 66 |
|
sseq1 |
|
| 67 |
66
|
rabbidv |
|
| 68 |
67
|
eqeq2d |
|
| 69 |
68
|
cbvrexvw |
|
| 70 |
|
biid |
|
| 71 |
65 69 70
|
3bitri |
|
| 72 |
71
|
biimpi |
|
| 73 |
72
|
ad3antlr |
|
| 74 |
63 73
|
r19.29a |
|
| 75 |
74
|
adantl3r |
|
| 76 |
1 64
|
elrnmpti |
|
| 77 |
|
sseq1 |
|
| 78 |
77
|
rabbidv |
|
| 79 |
78
|
eqeq2d |
|
| 80 |
79
|
cbvrexvw |
|
| 81 |
|
biid |
|
| 82 |
76 80 81
|
3bitri |
|
| 83 |
82
|
biimpi |
|
| 84 |
83
|
ad2antlr |
|
| 85 |
75 84
|
r19.29a |
|
| 86 |
85
|
3impa |
|