Description: The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlabl.l | |
|
lidlabl.i | |
||
zlidlring.b | |
||
zlidlring.0 | |
||
Assertion | zlidlring | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | |
|
2 | lidlabl.i | |
|
3 | zlidlring.b | |
|
4 | zlidlring.0 | |
|
5 | 1 4 | lidl0 | |
6 | 5 | adantr | |
7 | eleq1 | |
|
8 | 7 | adantl | |
9 | 6 8 | mpbird | |
10 | 1 2 | lidlrng | |
11 | 9 10 | syldan | |
12 | eleq1 | |
|
13 | 12 | eqcoms | |
14 | 13 | adantl | |
15 | eqid | |
|
16 | 15 4 | ring0cl | |
17 | eqid | |
|
18 | 15 17 4 | ringlz | |
19 | 18 18 | jca | |
20 | 16 19 | mpdan | |
21 | 4 | fvexi | |
22 | oveq2 | |
|
23 | id | |
|
24 | 22 23 | eqeq12d | |
25 | oveq1 | |
|
26 | 25 23 | eqeq12d | |
27 | 24 26 | anbi12d | |
28 | 27 | ralsng | |
29 | 21 28 | mp1i | |
30 | 20 29 | mpbird | |
31 | oveq1 | |
|
32 | 31 | eqeq1d | |
33 | 32 | ovanraleqv | |
34 | 33 | rexsng | |
35 | 21 34 | mp1i | |
36 | 30 35 | mpbird | |
37 | 36 | adantr | |
38 | 37 | adantr | |
39 | 1 2 | lidlbas | |
40 | simpr | |
|
41 | 39 40 | sylan9eqr | |
42 | 2 17 | ressmulr | |
43 | 42 | eqcomd | |
44 | 43 | adantl | |
45 | 44 | oveqd | |
46 | 45 | eqeq1d | |
47 | 44 | oveqd | |
48 | 47 | eqeq1d | |
49 | 46 48 | anbi12d | |
50 | 41 49 | raleqbidv | |
51 | 41 50 | rexeqbidv | |
52 | 38 51 | mpbird | |
53 | 52 | ex | |
54 | 14 53 | sylbid | |
55 | 6 54 | mpd | |
56 | eqid | |
|
57 | eqid | |
|
58 | 56 57 | isringrng | |
59 | 11 55 58 | sylanbrc | |