| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stctop |
⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) |
| 2 |
|
difss |
⊢ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 |
| 3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 4 |
3
|
1stcelcls |
⊢ ( ( 𝐽 ∈ 1stω ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
| 5 |
2 4
|
mpan2 |
⊢ ( 𝐽 ∈ 1stω → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝐽 ∈ Top ) |
| 9 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 12 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ∪ 𝐽 ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ∪ 𝐽 ) |
| 14 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 15 |
|
vex |
⊢ 𝑓 ∈ V |
| 16 |
15
|
rnex |
⊢ ran 𝑓 ∈ V |
| 17 |
|
vsnex |
⊢ { 𝑦 } ∈ V |
| 18 |
16 17
|
unex |
⊢ ( ran 𝑓 ∪ { 𝑦 } ) ∈ V |
| 19 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝑓 ∪ { 𝑦 } ) ∈ V ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ) |
| 20 |
8 18 19
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ) |
| 21 |
|
toptopon2 |
⊢ ( ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ↔ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 22 |
20 21
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 23 |
|
1zzd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 1 ∈ ℤ ) |
| 24 |
|
eqid |
⊢ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) = ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 25 |
18
|
a1i |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) ∈ V ) |
| 26 |
|
ssun2 |
⊢ { 𝑦 } ⊆ ( ran 𝑓 ∪ { 𝑦 } ) |
| 27 |
|
vex |
⊢ 𝑦 ∈ V |
| 28 |
27
|
snss |
⊢ ( 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) ↔ { 𝑦 } ⊆ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 29 |
26 28
|
mpbir |
⊢ 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) |
| 30 |
29
|
a1i |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 31 |
|
ffn |
⊢ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) → 𝑓 Fn ℕ ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 Fn ℕ ) |
| 33 |
|
dffn3 |
⊢ ( 𝑓 Fn ℕ ↔ 𝑓 : ℕ ⟶ ran 𝑓 ) |
| 34 |
32 33
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ran 𝑓 ) |
| 35 |
|
ssun1 |
⊢ ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑦 } ) |
| 36 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑓 ∧ ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑦 } ) ) → 𝑓 : ℕ ⟶ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 37 |
34 35 36
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 38 |
24 14 25 8 30 23 37
|
lmss |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑓 ( ⇝𝑡 ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) 𝑦 ) ) |
| 39 |
11 38
|
mpbid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 ( ⇝𝑡 ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) 𝑦 ) |
| 40 |
37
|
ffvelcdmda |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 41 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 42 |
41
|
ffvelcdmda |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 43 |
42
|
eldifbd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) |
| 44 |
40 43
|
eldifd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ) |
| 45 |
|
difin |
⊢ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) = ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) |
| 46 |
|
frn |
⊢ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) → ran 𝑓 ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 47 |
46
|
ad2antrl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ran 𝑓 ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 48 |
47
|
difss2d |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ran 𝑓 ⊆ ∪ 𝐽 ) |
| 49 |
13
|
snssd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → { 𝑦 } ⊆ ∪ 𝐽 ) |
| 50 |
48 49
|
unssd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) ⊆ ∪ 𝐽 ) |
| 51 |
3
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝑓 ∪ { 𝑦 } ) ⊆ ∪ 𝐽 ) → ( ran 𝑓 ∪ { 𝑦 } ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 52 |
8 50 51
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 53 |
52
|
difeq1d |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) = ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ) |
| 54 |
45 53
|
eqtr3id |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) = ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ) |
| 55 |
|
incom |
⊢ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) = ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 56 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) |
| 57 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → 𝑓 : ℕ ⟶ ∪ 𝐽 ) |
| 58 |
41 2 57
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ∪ 𝐽 ) |
| 59 |
10 58 11
|
1stckgenlem |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Comp ) |
| 60 |
|
kgeni |
⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Comp ) → ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 61 |
56 59 60
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 62 |
55 61
|
eqeltrid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 63 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 64 |
63
|
opncld |
⊢ ( ( ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ∧ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) → ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 65 |
20 62 64
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 66 |
54 65
|
eqeltrd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 67 |
14 22 23 39 44 66
|
lmcld |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ) |
| 68 |
67
|
eldifbd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
| 69 |
13 68
|
eldifd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 70 |
69
|
ex |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 71 |
70
|
exlimdv |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 72 |
6 71
|
sylbid |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 73 |
72
|
ssrdv |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 74 |
3
|
iscld4 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 75 |
7 2 74
|
sylancl |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 76 |
73 75
|
mpbird |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 77 |
|
elssuni |
⊢ ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 79 |
3
|
kgenuni |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 80 |
7 79
|
syl |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 81 |
78 80
|
sseqtrrd |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 82 |
3
|
isopn2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 83 |
7 81 82
|
syl2anc |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑥 ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 84 |
76 83
|
mpbird |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ∈ 𝐽 ) |
| 85 |
84
|
ex |
⊢ ( 𝐽 ∈ 1stω → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ) |
| 86 |
85
|
ssrdv |
⊢ ( 𝐽 ∈ 1stω → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 87 |
|
iskgen2 |
⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
| 88 |
1 86 87
|
sylanbrc |
⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen ) |