| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acunirnmpt.0 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
acunirnmpt.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
| 3 |
|
aciunf1lem.a |
⊢ Ⅎ 𝑗 𝐴 |
| 4 |
|
aciunf1lem.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 5 |
|
nfiu1 |
⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 𝐵 |
| 6 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 |
| 7 |
|
eqid |
⊢ ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ 𝑗 ∈ 𝐴 𝐵 |
| 8 |
|
csbeq1a |
⊢ ( 𝑗 = ( 𝑔 ‘ 𝑥 ) → 𝐵 = ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 9 |
1 2 3 5 6 7 8 4
|
acunirnmpt2f |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑥 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 |
| 12 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 14 |
10 13
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑔 |
| 17 |
16 5 3
|
nff |
⊢ Ⅎ 𝑗 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 19 |
18 6
|
nfel |
⊢ Ⅎ 𝑗 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 |
| 20 |
5 19
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 |
| 21 |
17 20
|
nfan |
⊢ Ⅎ 𝑗 ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 22 |
15 21
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 23 |
18 5
|
nfel |
⊢ Ⅎ 𝑗 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 |
| 24 |
22 23
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑗 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 |
| 26 |
|
nfiu1 |
⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 27 |
25 26
|
nfel |
⊢ Ⅎ 𝑗 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 29 |
28
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ) |
| 31 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) |
| 32 |
30 31
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) |
| 33 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 34 |
33
|
snid |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ { ( 𝑔 ‘ 𝑥 ) } |
| 35 |
34
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑔 ‘ 𝑥 ) ∈ { ( 𝑔 ‘ 𝑥 ) } ) |
| 36 |
28
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) |
| 38 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 → ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 39 |
36 37 38
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 41 |
35 40
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑔 ‘ 𝑥 ) ∈ { ( 𝑔 ‘ 𝑥 ) } ∧ 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 42 |
|
opelxp |
⊢ ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { ( 𝑔 ‘ 𝑥 ) } × ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ↔ ( ( 𝑔 ‘ 𝑥 ) ∈ { ( 𝑔 ‘ 𝑥 ) } ∧ 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 43 |
41 42
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { ( 𝑔 ‘ 𝑥 ) } × ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 44 |
|
sneq |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → { 𝑘 } = { ( 𝑔 ‘ 𝑥 ) } ) |
| 45 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) |
| 46 |
44 45
|
xpeq12d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) = ( { ( 𝑔 ‘ 𝑥 ) } × ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) |
| 47 |
46
|
eleq2d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ↔ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { ( 𝑔 ‘ 𝑥 ) } × ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ) |
| 48 |
47
|
rspcev |
⊢ ( ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ∧ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { ( 𝑔 ‘ 𝑥 ) } × ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ∃ 𝑘 ∈ 𝐴 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ) |
| 49 |
32 43 48
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑘 ∈ 𝐴 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ) |
| 50 |
|
eliun |
⊢ ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 52 |
|
nfv |
⊢ Ⅎ 𝑘 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑗 } × 𝐵 ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑘 } |
| 54 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 |
| 55 |
53 54
|
nfxp |
⊢ Ⅎ 𝑗 ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) |
| 56 |
25 55
|
nfel |
⊢ Ⅎ 𝑗 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) |
| 57 |
|
sneq |
⊢ ( 𝑗 = 𝑘 → { 𝑗 } = { 𝑘 } ) |
| 58 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) |
| 59 |
57 58
|
xpeq12d |
⊢ ( 𝑗 = 𝑘 → ( { 𝑗 } × 𝐵 ) = ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ) |
| 60 |
59
|
eleq2d |
⊢ ( 𝑗 = 𝑘 → ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑗 } × 𝐵 ) ↔ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ) ) |
| 61 |
3 51 52 56 60
|
cbvrexfw |
⊢ ( ∃ 𝑗 ∈ 𝐴 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘 ∈ 𝐴 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ) |
| 62 |
50 61
|
bitri |
⊢ ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘 ∈ 𝐴 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ( { 𝑘 } × ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ) ) |
| 63 |
49 62
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 64 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↔ ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 65 |
64
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 66 |
65
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → ∃ 𝑗 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 67 |
24 27 63 66
|
r19.29af2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 68 |
67
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ) |
| 69 |
14 68
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 70 |
|
vex |
⊢ 𝑥 ∈ V |
| 71 |
33 70
|
opth |
⊢ ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ∧ 𝑥 = 𝑦 ) ) |
| 72 |
71
|
simprbi |
⊢ ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) |
| 73 |
72
|
rgen2w |
⊢ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) |
| 74 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) ) |
| 75 |
69 74
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ( ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) ) ) |
| 76 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) |
| 77 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ) |
| 78 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 79 |
77 78
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 ) |
| 80 |
76 79
|
f1mpt |
⊢ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ( ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝑔 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) ) ) |
| 81 |
75 80
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 82 |
|
opex |
⊢ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ V |
| 83 |
76
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ∧ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ∈ V ) → ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) = 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) |
| 84 |
82 83
|
mpan2 |
⊢ ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) = 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) |
| 85 |
37 84
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) = 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) |
| 86 |
85
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = ( 2nd ‘ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ) |
| 87 |
33 70
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) = 𝑥 |
| 88 |
86 87
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) ∧ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ) → ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 89 |
88
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 90 |
14 89
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 91 |
81 90
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 92 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑘 |
| 93 |
92 3
|
nfel |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝐴 |
| 94 |
15 93
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) |
| 95 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑊 |
| 96 |
54 95
|
nfel |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 |
| 97 |
94 96
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) |
| 98 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
| 99 |
98
|
anbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ) ) |
| 100 |
58
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ∈ 𝑊 ↔ ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) ) |
| 101 |
99 100
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) ) ) |
| 102 |
97 101 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) |
| 103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) |
| 104 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 105 |
3 51 104 54 58
|
cbviunf |
⊢ ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 |
| 106 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) → ∪ 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ V ) |
| 107 |
105 106
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) → ∪ 𝑗 ∈ 𝐴 𝐵 ∈ V ) |
| 108 |
1 103 107
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 𝐵 ∈ V ) |
| 109 |
|
mptexg |
⊢ ( ∪ 𝑗 ∈ 𝐴 𝐵 ∈ V → ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ∈ V ) |
| 110 |
|
f1eq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) → ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ) |
| 111 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑓 |
| 112 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) |
| 113 |
111 112
|
nfeq |
⊢ Ⅎ 𝑥 𝑓 = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) |
| 114 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) |
| 115 |
114
|
fveqeq2d |
⊢ ( 𝑓 = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) → ( ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ↔ ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 116 |
113 115
|
ralbid |
⊢ ( 𝑓 = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) → ( ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ↔ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 117 |
110 116
|
anbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) → ( ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ) ↔ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) ) ) |
| 118 |
117
|
spcegv |
⊢ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ∈ V → ( ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) → ∃ 𝑓 ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ) ) ) |
| 119 |
108 109 118
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) → ∃ 𝑓 ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ) ) ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ( ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( ( 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈 ( 𝑔 ‘ 𝑥 ) , 𝑥 〉 ) ‘ 𝑥 ) ) = 𝑥 ) → ∃ 𝑓 ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ) ) ) |
| 121 |
91 120
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑔 : ∪ 𝑗 ∈ 𝐴 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 𝑥 ∈ ⦋ ( 𝑔 ‘ 𝑥 ) / 𝑗 ⦌ 𝐵 ) ) → ∃ 𝑓 ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ) ) |
| 122 |
9 121
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ∪ 𝑗 ∈ 𝐴 𝐵 –1-1→ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ( 2nd ‘ ( 𝑓 ‘ 𝑥 ) ) = 𝑥 ) ) |