Step |
Hyp |
Ref |
Expression |
1 |
|
cncfuni.acn |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
cncfuni.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
cncfuni.auni |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) |
4 |
|
cncfuni.opn |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
5 |
|
cncfuni.fcn |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) |
6 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝐵 ) |
7 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) |
9 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝜑 ) |
10 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝑏 ∈ 𝐵 ) |
11 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏 ) ) |
12 |
11
|
biimpri |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
14 |
13
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
15 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
16 |
15
|
ineq2d |
⊢ ( 𝜑 → ( 𝑏 ∩ dom 𝐹 ) = ( 𝑏 ∩ 𝐴 ) ) |
17 |
|
incom |
⊢ ( 𝑏 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑏 ) |
18 |
16 17
|
eqtr2di |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) = ( 𝑏 ∩ dom 𝐹 ) ) |
19 |
18
|
reseq2d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) ) |
20 |
|
frel |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → Rel 𝐹 ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → Rel 𝐹 ) |
22 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
24 |
19 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
25 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ) |
27 |
26 1
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ) |
28 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
29 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
30 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) |
31 |
29
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
32 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
33 |
32
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
34 |
31 33
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
35 |
34
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
36 |
29 30 35
|
cncfcn |
⊢ ( ( ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
37 |
27 28 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
38 |
37
|
eqcomd |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) |
39 |
24 38
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) ) |
41 |
5 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
42 |
41
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
43 |
29
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
44 |
43
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
45 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
46 |
44 27 45
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
48 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
49 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
50 |
47 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
51 |
42 50
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
52 |
51
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
53 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
54 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
55 |
52 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
56 |
31
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
57 |
|
cnex |
⊢ ℂ ∈ V |
58 |
57
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
59 |
1 58
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
60 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
61 |
56 26 59 60
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
62 |
61
|
eqcomd |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
64 |
63
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
65 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
66 |
55 65
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
67 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐴 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
68 |
56 59 67
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
69 |
68
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
70 |
32
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐴 ⊆ ℂ ) → 𝐴 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
71 |
56 1 70
|
syl2anc |
⊢ ( 𝜑 → 𝐴 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
72 |
26 71
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
73 |
72
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
74 |
4
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
75 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
76 |
75
|
isopn3 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) → ( ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) ) |
77 |
69 73 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) ) |
78 |
74 77
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) |
79 |
78
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
80 |
53 79
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
81 |
71
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ℂ ↔ 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) ) |
82 |
2 81
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) |
83 |
82
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) |
84 |
75 32
|
cnprest |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ∧ ( 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ∧ 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
85 |
69 73 80 83 84
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
86 |
66 85
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
87 |
9 10 14 86
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
88 |
87
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
89 |
8 88
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
90 |
89
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
91 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
92 |
44 1 91
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
93 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
94 |
92 44 93
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
95 |
2 90 94
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
96 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
97 |
29 96 35
|
cncfcn |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
98 |
1 28 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
99 |
98
|
eqcomd |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) = ( 𝐴 –cn→ ℂ ) ) |
100 |
95 99
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |