| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfuni.acn |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 2 |
|
cncfuni.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 3 |
|
cncfuni.auni |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) |
| 4 |
|
cncfuni.opn |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 5 |
|
cncfuni.fcn |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) |
| 6 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝐵 ) |
| 7 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) |
| 9 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝜑 ) |
| 10 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝑏 ∈ 𝐵 ) |
| 11 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏 ) ) |
| 12 |
11
|
biimpri |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 13 |
12
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 14 |
13
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 15 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 16 |
15
|
ineq2d |
⊢ ( 𝜑 → ( 𝑏 ∩ dom 𝐹 ) = ( 𝑏 ∩ 𝐴 ) ) |
| 17 |
|
incom |
⊢ ( 𝑏 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑏 ) |
| 18 |
16 17
|
eqtr2di |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) = ( 𝑏 ∩ dom 𝐹 ) ) |
| 19 |
18
|
reseq2d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) ) |
| 20 |
|
frel |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → Rel 𝐹 ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → Rel 𝐹 ) |
| 22 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
| 24 |
19 23
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
| 25 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ) |
| 27 |
26 1
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ) |
| 28 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 29 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 30 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) |
| 31 |
29
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 32 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 33 |
32
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 34 |
31 33
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 35 |
34
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 36 |
29 30 35
|
cncfcn |
⊢ ( ( ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 37 |
27 28 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 38 |
37
|
eqcomd |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) |
| 39 |
24 38
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) ) |
| 41 |
5 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 42 |
41
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 |
29
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 45 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 46 |
44 27 45
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 48 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 49 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 50 |
47 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 51 |
42 50
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 52 |
51
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 53 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 54 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 55 |
52 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 56 |
31
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 57 |
|
cnex |
⊢ ℂ ∈ V |
| 58 |
57
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
| 59 |
1 58
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 60 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
| 61 |
56 26 59 60
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
| 62 |
61
|
eqcomd |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 64 |
63
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 65 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 66 |
55 65
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 67 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐴 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
| 68 |
56 59 67
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
| 69 |
68
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
| 70 |
32
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐴 ⊆ ℂ ) → 𝐴 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 71 |
56 1 70
|
syl2anc |
⊢ ( 𝜑 → 𝐴 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 72 |
26 71
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 73 |
72
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 74 |
4
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 75 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
| 76 |
75
|
isopn3 |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) → ( ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) ) |
| 77 |
69 73 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) ) |
| 78 |
74 77
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) |
| 79 |
78
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 80 |
53 79
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 81 |
71
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ℂ ↔ 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) ) |
| 82 |
2 81
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) |
| 83 |
82
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) |
| 84 |
75 32
|
cnprest |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ∧ ( 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ∧ 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 85 |
69 73 80 83 84
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 86 |
66 85
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 87 |
9 10 14 86
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 88 |
87
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 89 |
8 88
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 90 |
89
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 91 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 92 |
44 1 91
|
syl2anc |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 93 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 94 |
92 44 93
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 95 |
2 90 94
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 96 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
| 97 |
29 96 35
|
cncfcn |
⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 98 |
1 28 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 99 |
98
|
eqcomd |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) = ( 𝐴 –cn→ ℂ ) ) |
| 100 |
95 99
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |