| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑧 ) |
| 3 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ∈ Fin ) |
| 4 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) |
| 5 |
|
vex |
⊢ 𝑧 ∈ V |
| 6 |
5
|
snss |
⊢ ( 𝑧 ∈ ℕ ↔ { 𝑧 } ⊆ ℕ ) |
| 7 |
6
|
biimpri |
⊢ ( { 𝑧 } ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
| 9 |
4 8
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝑧 ∈ ℕ ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑧 ∈ ℕ ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 13 |
|
simprrr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐹 : ℕ ⟶ ℕ ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 15 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑦 ⊆ ℕ ) |
| 16 |
4 15
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝑦 ⊆ ℕ ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ⊆ ℕ ) |
| 19 |
18
|
sselda |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
| 20 |
14 19
|
ffvelcdmd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 21 |
20
|
nncnd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 22 |
|
fveq2 |
⊢ ( 𝑚 = 𝑧 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 23 |
13 11
|
ffvelcdmd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 24 |
23
|
nncnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 25 |
1 2 3 11 12 21 22 24
|
fprodsplitsn |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 26 |
25
|
ad2ant2r |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 |
|
simprl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
| 28 |
|
simprr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝐹 : ℕ ⟶ ℕ ) |
| 29 |
28
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐹 : ℕ ⟶ ℕ ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 31 |
17
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ ℕ ) |
| 32 |
31
|
sselda |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
| 33 |
30 32
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 34 |
27 33
|
fprodnncl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 35 |
34
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 37 |
36
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 39 |
38
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 40 |
39
|
nnzd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ) |
| 41 |
28 10
|
ffvelcdmd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 42 |
41
|
nnzd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 43 |
42
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 44 |
43
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 45 |
|
nnz |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝐾 ∈ ℤ ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝐾 ∈ ℤ ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 49 |
48
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → 𝐾 ∈ ℤ ) |
| 50 |
40 44 49
|
3jca |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 51 |
|
simpl |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → 𝐹 : ℕ ⟶ ℕ ) |
| 52 |
9
|
adantl |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
| 53 |
51 52
|
ffvelcdmd |
⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 54 |
53
|
ex |
⊢ ( 𝐹 : ℕ ⟶ ℕ → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 56 |
55
|
impcom |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 57 |
56
|
adantl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 58 |
3 18 57
|
3jca |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 60 |
13
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 61 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
| 62 |
61
|
olci |
⊢ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) |
| 63 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) |
| 64 |
62 63
|
mpbir |
⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 65 |
64
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 66 |
|
snssi |
⊢ ( 𝑚 ∈ 𝑦 → { 𝑚 } ⊆ 𝑦 ) |
| 67 |
66
|
ssneld |
⊢ ( 𝑚 ∈ 𝑦 → ( ¬ 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 68 |
67
|
com12 |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ¬ 𝑧 ∈ { 𝑚 } ) |
| 72 |
65 71
|
eldifd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) ) |
| 75 |
74
|
eqeq1d |
⊢ ( 𝑛 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 76 |
75
|
rspcv |
⊢ ( 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 77 |
72 76
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 78 |
77
|
ralimdva |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 79 |
|
ralunb |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 80 |
79
|
simplbi |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 81 |
78 80
|
impel |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 82 |
|
raldifb |
⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 83 |
|
ralunb |
⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑛 ∈ { 𝑧 } ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 84 |
|
raldifb |
⊢ ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 85 |
84
|
biimpi |
⊢ ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 86 |
85
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑛 ∈ { 𝑧 } ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 87 |
83 86
|
sylbi |
⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 88 |
82 87
|
sylbir |
⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 89 |
88
|
ralimi |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 90 |
89
|
adantr |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 91 |
79 90
|
sylbi |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 92 |
91
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 93 |
|
coprmprod |
⊢ ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 94 |
93
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 95 |
59 60 81 92 94
|
syl31anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 96 |
95
|
ex |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 97 |
96
|
adantrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 98 |
97
|
expimpd |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 99 |
98
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 100 |
99
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 101 |
83
|
simplbi |
⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 102 |
82 101
|
sylbir |
⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 103 |
102
|
ralimi |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 105 |
79 104
|
sylbi |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 106 |
|
ralunb |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ( ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ∧ ∀ 𝑚 ∈ { 𝑧 } ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 107 |
106
|
simplbi |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 → ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 108 |
84
|
ralbii |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 109 |
108
|
anbi1i |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 110 |
17
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ⊆ ℕ ) |
| 111 |
|
simprrl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐾 ∈ ℕ ) |
| 112 |
|
simprrr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐹 : ℕ ⟶ ℕ ) |
| 113 |
110 111 112
|
jca32 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 114 |
|
simplr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 115 |
|
pm2.27 |
⊢ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 116 |
113 114 115
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 117 |
116
|
exp31 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 118 |
117
|
com24 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 119 |
118
|
imp |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 120 |
119
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 121 |
109 120
|
biimtrid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 122 |
105 107 121
|
syl2ani |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 123 |
122
|
impr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 124 |
22
|
breq1d |
⊢ ( 𝑚 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) ) |
| 125 |
124
|
rspcv |
⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) ) |
| 126 |
64 125
|
ax-mp |
⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 127 |
126
|
adantl |
⊢ ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 128 |
127
|
adantl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 129 |
128
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 130 |
|
coprmdvds2 |
⊢ ( ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) → ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ∧ ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∥ 𝐾 ) ) |
| 131 |
130
|
imp |
⊢ ( ( ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ∧ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ∧ ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∥ 𝐾 ) |
| 132 |
50 100 123 129 131
|
syl22anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∥ 𝐾 ) |
| 133 |
26 132
|
eqbrtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 134 |
133
|
exp31 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |