| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ℕ ↔ ∅ ⊆ ℕ ) ) |
| 2 |
1
|
3anbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 3 |
|
raleq |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 4 |
|
difeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∖ { 𝑚 } ) = ( ∅ ∖ { 𝑚 } ) ) |
| 5 |
4
|
raleqdv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 6 |
5
|
raleqbi1dv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 7 |
2 3 6
|
3anbi123d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 8 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 11 |
7 10
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 12 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ ) ) |
| 13 |
12
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 14 |
|
raleq |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 15 |
|
difeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑦 ∖ { 𝑚 } ) ) |
| 16 |
15
|
raleqdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 17 |
16
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 18 |
13 14 17
|
3anbi123d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 19 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 23 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ ℕ ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) ) |
| 24 |
23
|
3anbi1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 25 |
|
raleq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 26 |
|
difeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∖ { 𝑚 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
| 27 |
26
|
raleqdv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 28 |
27
|
raleqbi1dv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 29 |
24 25 28
|
3anbi123d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 30 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 32 |
31
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 33 |
29 32
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 34 |
|
sseq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ ) ) |
| 35 |
34
|
3anbi1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 36 |
|
raleq |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 37 |
|
difeq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑀 ∖ { 𝑚 } ) ) |
| 38 |
37
|
raleqdv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 39 |
38
|
raleqbi1dv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 40 |
35 36 39
|
3anbi123d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 41 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑀 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝑥 = 𝑀 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( 𝑥 = 𝑀 → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 44 |
40 43
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 45 |
|
prod0 |
⊢ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 |
| 46 |
45
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 1 gcd 𝑁 ) ) |
| 48 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 49 |
|
1gcd |
⊢ ( 𝑁 ∈ ℤ → ( 1 gcd 𝑁 ) = 1 ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 gcd 𝑁 ) = 1 ) |
| 51 |
47 50
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 52 |
51
|
3ad2ant2 |
⊢ ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 54 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 55 |
|
nfcv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑧 ) |
| 56 |
|
simprl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
| 57 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) |
| 58 |
|
vex |
⊢ 𝑧 ∈ V |
| 59 |
58
|
snss |
⊢ ( 𝑧 ∈ ℕ ↔ { 𝑧 } ⊆ ℕ ) |
| 60 |
59
|
biimpri |
⊢ ( { 𝑧 } ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
| 62 |
57 61
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 63 |
62
|
3ad2ant1 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑧 ∈ ℕ ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ ℕ ) |
| 65 |
|
simprr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 66 |
|
simpll3 |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 67 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑦 ⊆ ℕ ) |
| 68 |
57 67
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) |
| 69 |
68
|
3ad2ant1 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑦 ⊆ ℕ ) |
| 70 |
69
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ ℕ ) |
| 71 |
70
|
sselda |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
| 72 |
66 71
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 73 |
72
|
nncnd |
⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 74 |
|
fveq2 |
⊢ ( 𝑚 = 𝑧 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 75 |
|
simpr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝐹 : ℕ ⟶ ℕ ) |
| 76 |
62
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑧 ∈ ℕ ) |
| 77 |
75 76
|
ffvelcdmd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 78 |
77
|
3adant2 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 79 |
78
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 80 |
79
|
nncnd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 81 |
54 55 56 64 65 73 74 80
|
fprodsplitsn |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 82 |
81
|
oveq1d |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) gcd 𝑁 ) ) |
| 83 |
56 72
|
fprodnncl |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 84 |
83
|
nnzd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ) |
| 85 |
79
|
nnzd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 86 |
84 85
|
zmulcld |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
| 87 |
48
|
3ad2ant2 |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑁 ∈ ℤ ) |
| 88 |
87
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑁 ∈ ℤ ) |
| 89 |
86 88
|
gcdcomd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 90 |
82 89
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 91 |
90
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 92 |
91
|
3ad2ant1 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 93 |
92
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 95 |
94
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 96 |
|
simpl2 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑁 ∈ ℕ ) |
| 97 |
96 83 79
|
3jca |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 98 |
97
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 99 |
98
|
3ad2ant1 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 100 |
99
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 101 |
100
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 102 |
101
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 103 |
88 84
|
gcdcomd |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 104 |
103
|
ex |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 105 |
104
|
3ad2ant1 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 106 |
105
|
com12 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 108 |
107
|
imp |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 109 |
68
|
a1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) ) |
| 110 |
|
idd |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) ) |
| 111 |
|
idd |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐹 : ℕ ⟶ ℕ → 𝐹 : ℕ ⟶ ℕ ) ) |
| 112 |
109 110 111
|
3anim123d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 113 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 114 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 115 |
113 114
|
mp1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 116 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 117 |
113 116
|
mp1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 118 |
113
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 119 |
118
|
ssdifd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑚 } ) ⊆ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
| 120 |
|
ssralv |
⊢ ( ( 𝑦 ∖ { 𝑚 } ) ⊆ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 121 |
119 120
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 122 |
121
|
ralimdva |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 123 |
117 122
|
syld |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 124 |
112 115 123
|
3anim123d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 125 |
124
|
imim1d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 126 |
125
|
imp31 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 127 |
108 126
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = 1 ) |
| 128 |
|
rpmulgcd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = 1 ) → ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) ) |
| 129 |
102 127 128
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) ) |
| 130 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
| 131 |
130
|
olci |
⊢ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) |
| 132 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) |
| 133 |
131 132
|
mpbir |
⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 134 |
74
|
oveq1d |
⊢ ( 𝑚 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
| 135 |
134
|
eqeq1d |
⊢ ( 𝑚 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 136 |
135
|
rspcv |
⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 137 |
133 136
|
mp1i |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 138 |
137
|
imp |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) |
| 139 |
78
|
nnzd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 140 |
87 139
|
gcdcomd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
| 141 |
140
|
eqeq1d |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 142 |
141
|
adantr |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 143 |
138 142
|
mpbird |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 144 |
143
|
3adant3 |
⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 145 |
144
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 146 |
95 129 145
|
3eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 147 |
146
|
exp31 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 148 |
11 22 33 44 53 147
|
findcard2s |
⊢ ( 𝑀 ∈ Fin → ( ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 149 |
148
|
3expd |
⊢ ( 𝑀 ∈ Fin → ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) |
| 150 |
149
|
3expd |
⊢ ( 𝑀 ∈ Fin → ( 𝑀 ⊆ ℕ → ( 𝑁 ∈ ℕ → ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) ) ) |
| 151 |
150
|
3imp |
⊢ ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) |
| 152 |
151
|
3imp |
⊢ ( ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |