Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptfprod.iph |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
dvmptfprod.jph |
⊢ Ⅎ 𝑗 𝜑 |
3 |
|
dvmptfprod.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) |
4 |
|
dvmptfprod.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
|
dvmptfprod.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
6 |
|
dvmptfprod.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
7 |
|
dvmptfprod.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
8 |
|
dvmptfprod.a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
9 |
|
dvmptfprod.b |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
10 |
|
dvmptfprod.d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
11 |
|
dvmptfprod.bc |
⊢ ( 𝑖 = 𝑗 → 𝐵 = 𝐶 ) |
12 |
|
ssid |
⊢ 𝐼 ⊆ 𝐼 |
13 |
12
|
jctr |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐼 ⊆ 𝐼 ) ) |
14 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼 ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐼 ) ) ) |
16 |
|
prodeq1 |
⊢ ( 𝑎 = ∅ → ∏ 𝑖 ∈ 𝑎 𝐴 = ∏ 𝑖 ∈ ∅ 𝐴 ) |
17 |
16
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) ) |
19 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) |
20 |
|
difeq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∖ { 𝑗 } ) = ( ∅ ∖ { 𝑗 } ) ) |
21 |
20
|
prodeq1d |
⊢ ( 𝑎 = ∅ → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) |
22 |
21
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) |
23 |
22
|
sumeq2sdv |
⊢ ( 𝑎 = ∅ → Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) |
24 |
19 23
|
eqtrd |
⊢ ( 𝑎 = ∅ → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) |
25 |
24
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) |
26 |
18 25
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) ) |
27 |
15 26
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) ) ) |
28 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼 ) ) |
29 |
28
|
anbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) ↔ ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) ) ) |
30 |
|
prodeq1 |
⊢ ( 𝑎 = 𝑏 → ∏ 𝑖 ∈ 𝑎 𝐴 = ∏ 𝑖 ∈ 𝑏 𝐴 ) |
31 |
30
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) ) |
33 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) |
34 |
|
difeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∖ { 𝑗 } ) = ( 𝑏 ∖ { 𝑗 } ) ) |
35 |
34
|
prodeq1d |
⊢ ( 𝑎 = 𝑏 → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) |
36 |
35
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
37 |
36
|
sumeq2sdv |
⊢ ( 𝑎 = 𝑏 → Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
38 |
33 37
|
eqtrd |
⊢ ( 𝑎 = 𝑏 → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
39 |
38
|
mpteq2dv |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
40 |
32 39
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ) |
41 |
29 40
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ) ) |
42 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐼 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) ↔ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) ) |
44 |
|
prodeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∏ 𝑖 ∈ 𝑎 𝐴 = ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) |
45 |
44
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) ) |
47 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) |
48 |
|
difeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∖ { 𝑗 } ) = ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) ) |
49 |
48
|
prodeq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) |
50 |
49
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) |
51 |
50
|
sumeq2sdv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) |
52 |
47 51
|
eqtrd |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) |
53 |
52
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
54 |
46 53
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) ) |
55 |
43 54
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) ) ) |
56 |
|
sseq1 |
⊢ ( 𝑎 = 𝐼 → ( 𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼 ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) ↔ ( 𝜑 ∧ 𝐼 ⊆ 𝐼 ) ) ) |
58 |
|
prodeq1 |
⊢ ( 𝑎 = 𝐼 → ∏ 𝑖 ∈ 𝑎 𝐴 = ∏ 𝑖 ∈ 𝐼 𝐴 ) |
59 |
58
|
mpteq2dv |
⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐼 𝐴 ) ) |
60 |
59
|
oveq2d |
⊢ ( 𝑎 = 𝐼 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐼 𝐴 ) ) ) |
61 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐼 → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) |
62 |
|
difeq1 |
⊢ ( 𝑎 = 𝐼 → ( 𝑎 ∖ { 𝑗 } ) = ( 𝐼 ∖ { 𝑗 } ) ) |
63 |
62
|
prodeq1d |
⊢ ( 𝑎 = 𝐼 → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) |
64 |
63
|
oveq2d |
⊢ ( 𝑎 = 𝐼 → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) |
65 |
64
|
a1d |
⊢ ( 𝑎 = 𝐼 → ( 𝑗 ∈ 𝐼 → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) |
66 |
65
|
ralrimiv |
⊢ ( 𝑎 = 𝐼 → ∀ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) |
67 |
66
|
sumeq2d |
⊢ ( 𝑎 = 𝐼 → Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) |
68 |
61 67
|
eqtrd |
⊢ ( 𝑎 = 𝐼 → Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) |
69 |
68
|
mpteq2dv |
⊢ ( 𝑎 = 𝐼 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) |
70 |
60 69
|
eqeq12d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) ) |
71 |
57 70
|
imbi12d |
⊢ ( 𝑎 = 𝐼 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑎 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑 ∧ 𝐼 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) ) ) |
72 |
|
prod0 |
⊢ ∏ 𝑖 ∈ ∅ 𝐴 = 1 |
73 |
72
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) |
74 |
73
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
75 |
74
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ) |
76 |
4
|
oveq1i |
⊢ ( 𝐾 ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
77 |
3 76
|
eqtri |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
78 |
6 77
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
79 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
80 |
5 78 79
|
dvmptconst |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
81 |
|
sum0 |
⊢ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) = 0 |
82 |
81
|
eqcomi |
⊢ 0 = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) |
83 |
82
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ 0 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) |
84 |
83
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 0 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) |
85 |
75 80 84
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) |
87 |
|
simp3 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) |
88 |
|
simp1r |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ¬ 𝑐 ∈ 𝑏 ) |
89 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝜑 ) |
90 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
91 |
|
sstr2 |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑏 ⊆ 𝐼 ) ) |
92 |
90 91
|
ax-mp |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑏 ⊆ 𝐼 ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝑏 ⊆ 𝐼 ) |
94 |
89 93
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) ) |
95 |
94
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) ) |
96 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ) |
97 |
95 96
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
98 |
97
|
3adant1 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
99 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) |
100 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
101 |
|
nfcv |
⊢ Ⅎ 𝑥 D |
102 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) |
103 |
100 101 102
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) |
104 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
105 |
103 104
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
106 |
99 105
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
107 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 |
108 |
1 107
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) |
109 |
|
nfv |
⊢ Ⅎ 𝑖 ¬ 𝑐 ∈ 𝑏 |
110 |
108 109
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) |
111 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑆 |
112 |
|
nfcv |
⊢ Ⅎ 𝑖 D |
113 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑋 |
114 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑏 |
115 |
114
|
nfcprod1 |
⊢ Ⅎ 𝑖 ∏ 𝑖 ∈ 𝑏 𝐴 |
116 |
113 115
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) |
117 |
111 112 116
|
nfov |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) |
118 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐶 |
119 |
|
nfcv |
⊢ Ⅎ 𝑖 · |
120 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑏 ∖ { 𝑗 } ) |
121 |
120
|
nfcprod1 |
⊢ Ⅎ 𝑖 ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 |
122 |
118 119 121
|
nfov |
⊢ Ⅎ 𝑖 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) |
123 |
114 122
|
nfsum |
⊢ Ⅎ 𝑖 Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) |
124 |
113 123
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
125 |
117 124
|
nfeq |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
126 |
110 125
|
nfan |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
127 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 |
128 |
2 127
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) |
129 |
|
nfv |
⊢ Ⅎ 𝑗 ¬ 𝑐 ∈ 𝑏 |
130 |
128 129
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) |
131 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) |
132 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑋 |
133 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑏 |
134 |
133
|
nfsum1 |
⊢ Ⅎ 𝑗 Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) |
135 |
132 134
|
nfmpt |
⊢ Ⅎ 𝑗 ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
136 |
131 135
|
nfeq |
⊢ Ⅎ 𝑗 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) |
137 |
130 136
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
138 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑐 / 𝑖 ⦌ 𝐴 |
139 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑐 / 𝑗 ⦌ 𝐶 |
140 |
89
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝜑 ) |
141 |
140
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
142 |
|
simp2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝑖 ∈ 𝐼 ) |
143 |
|
simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
144 |
141 142 143 8
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
145 |
140 7
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝐼 ∈ Fin ) |
146 |
93
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑏 ⊆ 𝐼 ) |
147 |
|
ssfi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼 ) → 𝑏 ∈ Fin ) |
148 |
145 146 147
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑏 ∈ Fin ) |
149 |
|
vex |
⊢ 𝑐 ∈ V |
150 |
149
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑐 ∈ V ) |
151 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ¬ 𝑐 ∈ 𝑏 ) |
152 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) |
153 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
154 |
140
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝑏 ) → 𝜑 ) |
155 |
146
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝑏 ) → 𝑏 ⊆ 𝐼 ) |
156 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝑏 ) → 𝑗 ∈ 𝑏 ) |
157 |
155 156
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝑏 ) → 𝑗 ∈ 𝐼 ) |
158 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝑏 ) → 𝑥 ∈ 𝑋 ) |
159 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ 𝐼 |
160 |
|
nfv |
⊢ Ⅎ 𝑖 𝑥 ∈ 𝑋 |
161 |
1 159 160
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) |
162 |
|
nfv |
⊢ Ⅎ 𝑖 𝐶 ∈ ℂ |
163 |
161 162
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
164 |
|
eleq1w |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ 𝐼 ↔ 𝑗 ∈ 𝐼 ) ) |
165 |
164
|
3anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) ) |
166 |
11
|
eleq1d |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
167 |
165 166
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) ) ) |
168 |
163 167 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
169 |
154 157 158 168
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝑏 ) → 𝐶 ∈ ℂ ) |
170 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) |
171 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
172 |
|
id |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) |
173 |
149
|
snid |
⊢ 𝑐 ∈ { 𝑐 } |
174 |
|
elun2 |
⊢ ( 𝑐 ∈ { 𝑐 } → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
175 |
173 174
|
ax-mp |
⊢ 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) |
176 |
175
|
a1i |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) ) |
177 |
172 176
|
sseldd |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → 𝑐 ∈ 𝐼 ) |
178 |
177
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑐 ∈ 𝐼 ) |
179 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
180 |
|
nfv |
⊢ Ⅎ 𝑗 𝑐 ∈ 𝐼 |
181 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝑋 |
182 |
2 180 181
|
nf3an |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) |
183 |
|
nfcv |
⊢ Ⅎ 𝑗 ℂ |
184 |
139 183
|
nfel |
⊢ Ⅎ 𝑗 ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ |
185 |
182 184
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
186 |
|
eleq1w |
⊢ ( 𝑗 = 𝑐 → ( 𝑗 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼 ) ) |
187 |
186
|
3anbi2d |
⊢ ( 𝑗 = 𝑐 → ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) ) |
188 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑐 → 𝐶 = ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) |
189 |
188
|
eleq1d |
⊢ ( 𝑗 = 𝑐 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) |
190 |
187 189
|
imbi12d |
⊢ ( 𝑗 = 𝑐 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) ) ) |
191 |
185 190 168
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
192 |
171 178 179 191
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
193 |
192
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
194 |
193
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ∈ ℂ ) |
195 |
2 180
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) |
196 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
197 |
132 139
|
nfmpt |
⊢ Ⅎ 𝑗 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) |
198 |
196 197
|
nfeq |
⊢ Ⅎ 𝑗 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) |
199 |
195 198
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) |
200 |
186
|
anbi2d |
⊢ ( 𝑗 = 𝑐 → ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) ↔ ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) ) ) |
201 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑐 → ⦋ 𝑗 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑗 ⦌ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) |
202 |
|
csbcow |
⊢ ⦋ 𝑐 / 𝑗 ⦌ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 |
203 |
202
|
a1i |
⊢ ( 𝑗 = 𝑐 → ⦋ 𝑐 / 𝑗 ⦌ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
204 |
201 203
|
eqtrd |
⊢ ( 𝑗 = 𝑐 → ⦋ 𝑗 / 𝑖 ⦌ 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
205 |
204
|
mpteq2dv |
⊢ ( 𝑗 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) |
206 |
205
|
oveq2d |
⊢ ( 𝑗 = 𝑐 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) ) |
207 |
188
|
mpteq2dv |
⊢ ( 𝑗 = 𝑐 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) |
208 |
206 207
|
eqeq12d |
⊢ ( 𝑗 = 𝑐 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) ) |
209 |
200 208
|
imbi12d |
⊢ ( 𝑗 = 𝑐 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) ) ) |
210 |
1 159
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) |
211 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐴 |
212 |
113 211
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) |
213 |
111 112 212
|
nfov |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) |
214 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) |
215 |
213 214
|
nfeq |
⊢ Ⅎ 𝑖 ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) |
216 |
210 215
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
217 |
164
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) ) ) |
218 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑗 → 𝐴 = ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) |
219 |
218
|
mpteq2dv |
⊢ ( 𝑖 = 𝑗 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) |
220 |
219
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) ) |
221 |
11
|
idi |
⊢ ( 𝑖 = 𝑗 → 𝐵 = 𝐶 ) |
222 |
221
|
mpteq2dv |
⊢ ( 𝑖 = 𝑗 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
223 |
220 222
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) |
224 |
217 223
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) ) |
225 |
216 224 10
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
226 |
199 209 225
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) |
227 |
177 226
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) |
228 |
227
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑐 / 𝑗 ⦌ 𝐶 ) ) |
229 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑐 → 𝐴 = ⦋ 𝑐 / 𝑖 ⦌ 𝐴 ) |
230 |
106 126 137 138 139 144 148 150 151 152 153 169 170 194 228 229 188
|
dvmptfprodlem |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
231 |
87 88 98 230
|
syl21anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
232 |
231
|
3exp |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝑏 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) ) ) |
233 |
27 41 55 71 86 232
|
findcard2s |
⊢ ( 𝐼 ∈ Fin → ( ( 𝜑 ∧ 𝐼 ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) ) |
234 |
7 13 233
|
sylc |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐼 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) |