Metamath Proof Explorer


Theorem dvmptfprod

Description: Function-builder for derivative, finite product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvmptfprod.iph 𝑖 𝜑
dvmptfprod.jph 𝑗 𝜑
dvmptfprod.j 𝐽 = ( 𝐾t 𝑆 )
dvmptfprod.k 𝐾 = ( TopOpen ‘ ℂfld )
dvmptfprod.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvmptfprod.x ( 𝜑𝑋𝐽 )
dvmptfprod.i ( 𝜑𝐼 ∈ Fin )
dvmptfprod.a ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ )
dvmptfprod.b ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐵 ∈ ℂ )
dvmptfprod.d ( ( 𝜑𝑖𝐼 ) → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
dvmptfprod.bc ( 𝑖 = 𝑗𝐵 = 𝐶 )
Assertion dvmptfprod ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 dvmptfprod.iph 𝑖 𝜑
2 dvmptfprod.jph 𝑗 𝜑
3 dvmptfprod.j 𝐽 = ( 𝐾t 𝑆 )
4 dvmptfprod.k 𝐾 = ( TopOpen ‘ ℂfld )
5 dvmptfprod.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
6 dvmptfprod.x ( 𝜑𝑋𝐽 )
7 dvmptfprod.i ( 𝜑𝐼 ∈ Fin )
8 dvmptfprod.a ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ )
9 dvmptfprod.b ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐵 ∈ ℂ )
10 dvmptfprod.d ( ( 𝜑𝑖𝐼 ) → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) )
11 dvmptfprod.bc ( 𝑖 = 𝑗𝐵 = 𝐶 )
12 ssid 𝐼𝐼
13 12 jctr ( 𝜑 → ( 𝜑𝐼𝐼 ) )
14 sseq1 ( 𝑎 = ∅ → ( 𝑎𝐼 ↔ ∅ ⊆ 𝐼 ) )
15 14 anbi2d ( 𝑎 = ∅ → ( ( 𝜑𝑎𝐼 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐼 ) ) )
16 prodeq1 ( 𝑎 = ∅ → ∏ 𝑖𝑎 𝐴 = ∏ 𝑖 ∈ ∅ 𝐴 )
17 16 mpteq2dv ( 𝑎 = ∅ → ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) = ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) )
18 17 oveq2d ( 𝑎 = ∅ → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) )
19 sumeq1 ( 𝑎 = ∅ → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) )
20 difeq1 ( 𝑎 = ∅ → ( 𝑎 ∖ { 𝑗 } ) = ( ∅ ∖ { 𝑗 } ) )
21 20 prodeq1d ( 𝑎 = ∅ → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 )
22 21 oveq2d ( 𝑎 = ∅ → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) )
23 22 sumeq2sdv ( 𝑎 = ∅ → Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) )
24 19 23 eqtrd ( 𝑎 = ∅ → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) )
25 24 mpteq2dv ( 𝑎 = ∅ → ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) )
26 18 25 eqeq12d ( 𝑎 = ∅ → ( ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) )
27 15 26 imbi12d ( 𝑎 = ∅ → ( ( ( 𝜑𝑎𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) ) ) )
28 sseq1 ( 𝑎 = 𝑏 → ( 𝑎𝐼𝑏𝐼 ) )
29 28 anbi2d ( 𝑎 = 𝑏 → ( ( 𝜑𝑎𝐼 ) ↔ ( 𝜑𝑏𝐼 ) ) )
30 prodeq1 ( 𝑎 = 𝑏 → ∏ 𝑖𝑎 𝐴 = ∏ 𝑖𝑏 𝐴 )
31 30 mpteq2dv ( 𝑎 = 𝑏 → ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) = ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) )
32 31 oveq2d ( 𝑎 = 𝑏 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) )
33 sumeq1 ( 𝑎 = 𝑏 → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) )
34 difeq1 ( 𝑎 = 𝑏 → ( 𝑎 ∖ { 𝑗 } ) = ( 𝑏 ∖ { 𝑗 } ) )
35 34 prodeq1d ( 𝑎 = 𝑏 → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 )
36 35 oveq2d ( 𝑎 = 𝑏 → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
37 36 sumeq2sdv ( 𝑎 = 𝑏 → Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
38 33 37 eqtrd ( 𝑎 = 𝑏 → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
39 38 mpteq2dv ( 𝑎 = 𝑏 → ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
40 32 39 eqeq12d ( 𝑎 = 𝑏 → ( ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) )
41 29 40 imbi12d ( 𝑎 = 𝑏 → ( ( ( 𝜑𝑎𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ) )
42 sseq1 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎𝐼 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) )
43 42 anbi2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑𝑎𝐼 ) ↔ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) )
44 prodeq1 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∏ 𝑖𝑎 𝐴 = ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 )
45 44 mpteq2dv ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) = ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) )
46 45 oveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) )
47 sumeq1 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) )
48 difeq1 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∖ { 𝑗 } ) = ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) )
49 48 prodeq1d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 )
50 49 oveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) )
51 50 sumeq2sdv ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) )
52 47 51 eqtrd ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) )
53 52 mpteq2dv ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) )
54 46 53 eqeq12d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) )
55 43 54 imbi12d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝜑𝑎𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) ) )
56 sseq1 ( 𝑎 = 𝐼 → ( 𝑎𝐼𝐼𝐼 ) )
57 56 anbi2d ( 𝑎 = 𝐼 → ( ( 𝜑𝑎𝐼 ) ↔ ( 𝜑𝐼𝐼 ) ) )
58 prodeq1 ( 𝑎 = 𝐼 → ∏ 𝑖𝑎 𝐴 = ∏ 𝑖𝐼 𝐴 )
59 58 mpteq2dv ( 𝑎 = 𝐼 → ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) = ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) )
60 59 oveq2d ( 𝑎 = 𝐼 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) ) )
61 sumeq1 ( 𝑎 = 𝐼 → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) )
62 difeq1 ( 𝑎 = 𝐼 → ( 𝑎 ∖ { 𝑗 } ) = ( 𝐼 ∖ { 𝑗 } ) )
63 62 prodeq1d ( 𝑎 = 𝐼 → ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 )
64 63 oveq2d ( 𝑎 = 𝐼 → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) )
65 64 a1d ( 𝑎 = 𝐼 → ( 𝑗𝐼 → ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) )
66 65 ralrimiv ( 𝑎 = 𝐼 → ∀ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) )
67 66 sumeq2d ( 𝑎 = 𝐼 → Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) )
68 61 67 eqtrd ( 𝑎 = 𝐼 → Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) )
69 68 mpteq2dv ( 𝑎 = 𝐼 → ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) )
70 60 69 eqeq12d ( 𝑎 = 𝐼 → ( ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ↔ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) )
71 57 70 imbi12d ( 𝑎 = 𝐼 → ( ( ( 𝜑𝑎𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑎 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑎 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑎 ∖ { 𝑗 } ) 𝐴 ) ) ) ↔ ( ( 𝜑𝐼𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) ) )
72 prod0 𝑖 ∈ ∅ 𝐴 = 1
73 72 mpteq2i ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) = ( 𝑥𝑋 ↦ 1 )
74 73 oveq2i ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ 1 ) )
75 74 a1i ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 ↦ 1 ) ) )
76 4 oveq1i ( 𝐾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
77 3 76 eqtri 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 )
78 6 77 eleqtrdi ( 𝜑𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) )
79 1cnd ( 𝜑 → 1 ∈ ℂ )
80 5 78 79 dvmptconst ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ 1 ) ) = ( 𝑥𝑋 ↦ 0 ) )
81 sum0 Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) = 0
82 81 eqcomi 0 = Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 )
83 82 mpteq2i ( 𝑥𝑋 ↦ 0 ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) )
84 83 a1i ( 𝜑 → ( 𝑥𝑋 ↦ 0 ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) )
85 75 80 84 3eqtrd ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) )
86 85 adantr ( ( 𝜑 ∧ ∅ ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ∅ 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ∅ ( 𝐶 · ∏ 𝑖 ∈ ( ∅ ∖ { 𝑗 } ) 𝐴 ) ) )
87 simp3 ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) )
88 simp1r ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ¬ 𝑐𝑏 )
89 simpl ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝜑 )
90 ssun1 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } )
91 sstr2 ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼𝑏𝐼 ) )
92 90 91 ax-mp ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼𝑏𝐼 )
93 92 adantl ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → 𝑏𝐼 )
94 89 93 jca ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝜑𝑏𝐼 ) )
95 94 adantl ( ( ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝜑𝑏𝐼 ) )
96 simpl ( ( ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) )
97 95 96 mpd ( ( ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
98 97 3adant1 ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
99 nfv 𝑥 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 )
100 nfcv 𝑥 𝑆
101 nfcv 𝑥 D
102 nfmpt1 𝑥 ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 )
103 100 101 102 nfov 𝑥 ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) )
104 nfmpt1 𝑥 ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
105 103 104 nfeq 𝑥 ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
106 99 105 nfan 𝑥 ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
107 nfv 𝑖 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼
108 1 107 nfan 𝑖 ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 )
109 nfv 𝑖 ¬ 𝑐𝑏
110 108 109 nfan 𝑖 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 )
111 nfcv 𝑖 𝑆
112 nfcv 𝑖 D
113 nfcv 𝑖 𝑋
114 nfcv 𝑖 𝑏
115 114 nfcprod1 𝑖𝑖𝑏 𝐴
116 113 115 nfmpt 𝑖 ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 )
117 111 112 116 nfov 𝑖 ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) )
118 nfcv 𝑖 𝐶
119 nfcv 𝑖 ·
120 nfcv 𝑖 ( 𝑏 ∖ { 𝑗 } )
121 120 nfcprod1 𝑖𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴
122 118 119 121 nfov 𝑖 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 )
123 114 122 nfsum 𝑖 Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 )
124 113 123 nfmpt 𝑖 ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
125 117 124 nfeq 𝑖 ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
126 110 125 nfan 𝑖 ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
127 nfv 𝑗 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼
128 2 127 nfan 𝑗 ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 )
129 nfv 𝑗 ¬ 𝑐𝑏
130 128 129 nfan 𝑗 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 )
131 nfcv 𝑗 ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) )
132 nfcv 𝑗 𝑋
133 nfcv 𝑗 𝑏
134 133 nfsum1 𝑗 Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 )
135 132 134 nfmpt 𝑗 ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
136 131 135 nfeq 𝑗 ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) )
137 130 136 nfan 𝑗 ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
138 nfcsb1v 𝑖 𝑐 / 𝑖 𝐴
139 nfcsb1v 𝑗 𝑐 / 𝑗 𝐶
140 89 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝜑 )
141 140 3ad2ant1 ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖𝐼𝑥𝑋 ) → 𝜑 )
142 simp2 ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖𝐼𝑥𝑋 ) → 𝑖𝐼 )
143 simp3 ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖𝐼𝑥𝑋 ) → 𝑥𝑋 )
144 141 142 143 8 syl3anc ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑖𝐼𝑥𝑋 ) → 𝐴 ∈ ℂ )
145 140 7 syl ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝐼 ∈ Fin )
146 93 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑏𝐼 )
147 ssfi ( ( 𝐼 ∈ Fin ∧ 𝑏𝐼 ) → 𝑏 ∈ Fin )
148 145 146 147 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑏 ∈ Fin )
149 vex 𝑐 ∈ V
150 149 a1i ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑐 ∈ V )
151 simplr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ¬ 𝑐𝑏 )
152 simpllr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 )
153 5 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → 𝑆 ∈ { ℝ , ℂ } )
154 140 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) ∧ 𝑗𝑏 ) → 𝜑 )
155 146 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) ∧ 𝑗𝑏 ) → 𝑏𝐼 )
156 simpr ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) ∧ 𝑗𝑏 ) → 𝑗𝑏 )
157 155 156 sseldd ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) ∧ 𝑗𝑏 ) → 𝑗𝐼 )
158 simplr ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) ∧ 𝑗𝑏 ) → 𝑥𝑋 )
159 nfv 𝑖 𝑗𝐼
160 nfv 𝑖 𝑥𝑋
161 1 159 160 nf3an 𝑖 ( 𝜑𝑗𝐼𝑥𝑋 )
162 nfv 𝑖 𝐶 ∈ ℂ
163 161 162 nfim 𝑖 ( ( 𝜑𝑗𝐼𝑥𝑋 ) → 𝐶 ∈ ℂ )
164 eleq1w ( 𝑖 = 𝑗 → ( 𝑖𝐼𝑗𝐼 ) )
165 164 3anbi2d ( 𝑖 = 𝑗 → ( ( 𝜑𝑖𝐼𝑥𝑋 ) ↔ ( 𝜑𝑗𝐼𝑥𝑋 ) ) )
166 11 eleq1d ( 𝑖 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) )
167 165 166 imbi12d ( 𝑖 = 𝑗 → ( ( ( 𝜑𝑖𝐼𝑥𝑋 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐼𝑥𝑋 ) → 𝐶 ∈ ℂ ) ) )
168 163 167 9 chvarfv ( ( 𝜑𝑗𝐼𝑥𝑋 ) → 𝐶 ∈ ℂ )
169 154 157 158 168 syl3anc ( ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) ∧ 𝑗𝑏 ) → 𝐶 ∈ ℂ )
170 simpr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) )
171 89 adantr ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥𝑋 ) → 𝜑 )
172 id ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 → ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 )
173 149 snid 𝑐 ∈ { 𝑐 }
174 elun2 ( 𝑐 ∈ { 𝑐 } → 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) )
175 173 174 ax-mp 𝑐 ∈ ( 𝑏 ∪ { 𝑐 } )
176 175 a1i ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼𝑐 ∈ ( 𝑏 ∪ { 𝑐 } ) )
177 172 176 sseldd ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼𝑐𝐼 )
178 177 ad2antlr ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥𝑋 ) → 𝑐𝐼 )
179 simpr ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥𝑋 ) → 𝑥𝑋 )
180 nfv 𝑗 𝑐𝐼
181 nfv 𝑗 𝑥𝑋
182 2 180 181 nf3an 𝑗 ( 𝜑𝑐𝐼𝑥𝑋 )
183 nfcv 𝑗
184 139 183 nfel 𝑗 𝑐 / 𝑗 𝐶 ∈ ℂ
185 182 184 nfim 𝑗 ( ( 𝜑𝑐𝐼𝑥𝑋 ) → 𝑐 / 𝑗 𝐶 ∈ ℂ )
186 eleq1w ( 𝑗 = 𝑐 → ( 𝑗𝐼𝑐𝐼 ) )
187 186 3anbi2d ( 𝑗 = 𝑐 → ( ( 𝜑𝑗𝐼𝑥𝑋 ) ↔ ( 𝜑𝑐𝐼𝑥𝑋 ) ) )
188 csbeq1a ( 𝑗 = 𝑐𝐶 = 𝑐 / 𝑗 𝐶 )
189 188 eleq1d ( 𝑗 = 𝑐 → ( 𝐶 ∈ ℂ ↔ 𝑐 / 𝑗 𝐶 ∈ ℂ ) )
190 187 189 imbi12d ( 𝑗 = 𝑐 → ( ( ( 𝜑𝑗𝐼𝑥𝑋 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑𝑐𝐼𝑥𝑋 ) → 𝑐 / 𝑗 𝐶 ∈ ℂ ) ) )
191 185 190 168 chvarfv ( ( 𝜑𝑐𝐼𝑥𝑋 ) → 𝑐 / 𝑗 𝐶 ∈ ℂ )
192 171 178 179 191 syl3anc ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ 𝑥𝑋 ) → 𝑐 / 𝑗 𝐶 ∈ ℂ )
193 192 adantlr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ 𝑥𝑋 ) → 𝑐 / 𝑗 𝐶 ∈ ℂ )
194 193 adantlr ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ 𝑥𝑋 ) → 𝑐 / 𝑗 𝐶 ∈ ℂ )
195 2 180 nfan 𝑗 ( 𝜑𝑐𝐼 )
196 nfcv 𝑗 ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) )
197 132 139 nfmpt 𝑗 ( 𝑥𝑋 𝑐 / 𝑗 𝐶 )
198 196 197 nfeq 𝑗 ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 )
199 195 198 nfim 𝑗 ( ( 𝜑𝑐𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) )
200 186 anbi2d ( 𝑗 = 𝑐 → ( ( 𝜑𝑗𝐼 ) ↔ ( 𝜑𝑐𝐼 ) ) )
201 csbeq1a ( 𝑗 = 𝑐 𝑗 / 𝑖 𝐴 = 𝑐 / 𝑗 𝑗 / 𝑖 𝐴 )
202 csbcow 𝑐 / 𝑗 𝑗 / 𝑖 𝐴 = 𝑐 / 𝑖 𝐴
203 202 a1i ( 𝑗 = 𝑐 𝑐 / 𝑗 𝑗 / 𝑖 𝐴 = 𝑐 / 𝑖 𝐴 )
204 201 203 eqtrd ( 𝑗 = 𝑐 𝑗 / 𝑖 𝐴 = 𝑐 / 𝑖 𝐴 )
205 204 mpteq2dv ( 𝑗 = 𝑐 → ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) = ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) )
206 205 oveq2d ( 𝑗 = 𝑐 → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) )
207 188 mpteq2dv ( 𝑗 = 𝑐 → ( 𝑥𝑋𝐶 ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) )
208 206 207 eqeq12d ( 𝑗 = 𝑐 → ( ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 ) ↔ ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) ) )
209 200 208 imbi12d ( 𝑗 = 𝑐 → ( ( ( 𝜑𝑗𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 ) ) ↔ ( ( 𝜑𝑐𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) ) ) )
210 1 159 nfan 𝑖 ( 𝜑𝑗𝐼 )
211 nfcsb1v 𝑖 𝑗 / 𝑖 𝐴
212 113 211 nfmpt 𝑖 ( 𝑥𝑋 𝑗 / 𝑖 𝐴 )
213 111 112 212 nfov 𝑖 ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) )
214 nfcv 𝑖 ( 𝑥𝑋𝐶 )
215 213 214 nfeq 𝑖 ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 )
216 210 215 nfim 𝑖 ( ( 𝜑𝑗𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 ) )
217 164 anbi2d ( 𝑖 = 𝑗 → ( ( 𝜑𝑖𝐼 ) ↔ ( 𝜑𝑗𝐼 ) ) )
218 csbeq1a ( 𝑖 = 𝑗𝐴 = 𝑗 / 𝑖 𝐴 )
219 218 mpteq2dv ( 𝑖 = 𝑗 → ( 𝑥𝑋𝐴 ) = ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) )
220 219 oveq2d ( 𝑖 = 𝑗 → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) )
221 11 idi ( 𝑖 = 𝑗𝐵 = 𝐶 )
222 221 mpteq2dv ( 𝑖 = 𝑗 → ( 𝑥𝑋𝐵 ) = ( 𝑥𝑋𝐶 ) )
223 220 222 eqeq12d ( 𝑖 = 𝑗 → ( ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) ↔ ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 ) ) )
224 217 223 imbi12d ( 𝑖 = 𝑗 → ( ( ( 𝜑𝑖𝐼 ) → ( 𝑆 D ( 𝑥𝑋𝐴 ) ) = ( 𝑥𝑋𝐵 ) ) ↔ ( ( 𝜑𝑗𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 ) ) ) )
225 216 224 10 chvarfv ( ( 𝜑𝑗𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑗 / 𝑖 𝐴 ) ) = ( 𝑥𝑋𝐶 ) )
226 199 209 225 chvarfv ( ( 𝜑𝑐𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) )
227 177 226 sylan2 ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) )
228 227 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑆 D ( 𝑥𝑋 𝑐 / 𝑖 𝐴 ) ) = ( 𝑥𝑋 𝑐 / 𝑗 𝐶 ) )
229 csbeq1a ( 𝑖 = 𝑐𝐴 = 𝑐 / 𝑖 𝐴 )
230 106 126 137 138 139 144 148 150 151 152 153 169 170 194 228 229 188 dvmptfprodlem ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ∧ ¬ 𝑐𝑏 ) ∧ ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) )
231 87 88 98 230 syl21anc ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) ∧ ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) ∧ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) )
232 231 3exp ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐𝑏 ) → ( ( ( 𝜑𝑏𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝑏 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝑏 ( 𝐶 · ∏ 𝑖 ∈ ( 𝑏 ∖ { 𝑗 } ) 𝐴 ) ) ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝑏 ∪ { 𝑐 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) ) )
233 27 41 55 71 86 232 findcard2s ( 𝐼 ∈ Fin → ( ( 𝜑𝐼𝐼 ) → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) ) )
234 7 13 233 sylc ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ∏ 𝑖𝐼 𝐴 ) ) = ( 𝑥𝑋 ↦ Σ 𝑗𝐼 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐼 ∖ { 𝑗 } ) 𝐴 ) ) )