Step |
Hyp |
Ref |
Expression |
1 |
|
dvnprodlem1.c |
⊢ 𝐶 = ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
2 |
|
dvnprodlem1.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
3 |
|
dvnprodlem1.d |
⊢ 𝐷 = ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↦ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
4 |
|
dvnprodlem1.t |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
5 |
|
dvnprodlem1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
6 |
|
dvnprodlem1.zr |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑅 ) |
7 |
|
dvnprodlem1.rzt |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) |
8 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
9 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 0 ∈ ℤ ) |
10 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℤ ) |
12 |
|
oveq2 |
⊢ ( 𝑛 = 𝐽 → ( 0 ... 𝑛 ) = ( 0 ... 𝐽 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑛 = 𝐽 → ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) = ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
14 |
|
eqeq2 |
⊢ ( 𝑛 = 𝐽 → ( Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
15 |
13 14
|
rabeqbidv |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
16 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
17 |
|
sumeq1 |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
19 |
16 18
|
rabeqbidv |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
21 |
4 7
|
sselpwd |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ) |
22 |
|
nn0ex |
⊢ ℕ0 ∈ V |
23 |
22
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
25 |
1 20 21 24
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
26 |
|
ovex |
⊢ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∈ V |
27 |
26
|
rabex |
⊢ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ V ) |
29 |
15 25 2 28
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
30 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) |
31 |
29 30
|
eqsstrdi |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
32 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
33 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
35 |
|
snidg |
⊢ ( 𝑍 ∈ 𝑇 → 𝑍 ∈ { 𝑍 } ) |
36 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
37 |
5 35 36
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
39 |
34 38
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) |
40 |
39
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℤ ) |
41 |
11 40
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ) |
42 |
|
elfzle2 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) |
43 |
39 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) |
44 |
11
|
zred |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℝ ) |
45 |
40
|
zred |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℝ ) |
46 |
44 45
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ↔ ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) ) |
47 |
43 46
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
48 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑍 ) ) |
49 |
39 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 0 ≤ ( 𝑐 ‘ 𝑍 ) ) |
50 |
44 45
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ≤ ( 𝑐 ‘ 𝑍 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ≤ 𝐽 ) ) |
51 |
49 50
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ≤ 𝐽 ) |
52 |
9 11 41 47 51
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) |
53 |
|
eqidd |
⊢ ( 𝑒 = ( 𝑐 ↾ 𝑅 ) → 𝑅 = 𝑅 ) |
54 |
|
simpl |
⊢ ( ( 𝑒 = ( 𝑐 ↾ 𝑅 ) ∧ 𝑡 ∈ 𝑅 ) → 𝑒 = ( 𝑐 ↾ 𝑅 ) ) |
55 |
54
|
fveq1d |
⊢ ( ( 𝑒 = ( 𝑐 ↾ 𝑅 ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑒 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
56 |
53 55
|
sumeq12rdv |
⊢ ( 𝑒 = ( 𝑐 ↾ 𝑅 ) → Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
57 |
56
|
eqeq1d |
⊢ ( 𝑒 = ( 𝑐 ↾ 𝑅 ) → ( Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ↔ Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
58 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ∈ V ) |
59 |
7
|
unssad |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑇 ) |
60 |
4 59
|
ssfid |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ∈ Fin ) |
62 |
|
elmapfn |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
63 |
32 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
64 |
|
ssun1 |
⊢ 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) |
65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) ) |
66 |
63 65
|
fnssresd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) Fn 𝑅 ) |
67 |
|
nfv |
⊢ Ⅎ 𝑡 𝜑 |
68 |
|
nfcv |
⊢ Ⅎ 𝑡 𝒫 𝑇 |
69 |
|
nfcv |
⊢ Ⅎ 𝑡 ℕ0 |
70 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑠 |
71 |
70
|
nfsum1 |
⊢ Ⅎ 𝑡 Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) |
72 |
71
|
nfeq1 |
⊢ Ⅎ 𝑡 Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 |
73 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( 0 ... 𝑛 ) ↑m 𝑠 ) |
74 |
72 73
|
nfrabw |
⊢ Ⅎ 𝑡 { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } |
75 |
69 74
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
76 |
68 75
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
77 |
1 76
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐶 |
78 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 𝑅 ∪ { 𝑍 } ) |
79 |
77 78
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) |
80 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐽 |
81 |
79 80
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) |
82 |
81
|
nfcri |
⊢ Ⅎ 𝑡 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) |
83 |
67 82
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
84 |
|
fvres |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
86 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ∈ ℤ ) |
87 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ) |
88 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
89 |
65
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
90 |
88 89
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) ) |
91 |
90
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ℤ ) |
92 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑡 ) ) |
93 |
90 92
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ ( 𝑐 ‘ 𝑡 ) ) |
94 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑅 ∈ Fin ) |
95 |
|
fzssre |
⊢ ( 0 ... 𝐽 ) ⊆ ℝ |
96 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
97 |
65
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
98 |
96 97
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ( 0 ... 𝐽 ) ) |
99 |
95 98
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ℝ ) |
100 |
99
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ℝ ) |
101 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑟 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑟 ) ) |
102 |
98 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → 0 ≤ ( 𝑐 ‘ 𝑟 ) ) |
103 |
102
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) ∧ 𝑟 ∈ 𝑅 ) → 0 ≤ ( 𝑐 ‘ 𝑟 ) ) |
104 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( 𝑐 ‘ 𝑟 ) = ( 𝑐 ‘ 𝑡 ) ) |
105 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑅 ) |
106 |
94 100 103 104 105
|
fsumge1 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ≤ Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ) |
107 |
99
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ℂ ) |
108 |
61 107
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ∈ ℂ ) |
109 |
40
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℂ ) |
110 |
104
|
cbvsumv |
⊢ Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) |
111 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
112 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑐 ‘ 𝑍 ) |
113 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ 𝑇 ) |
114 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ¬ 𝑍 ∈ 𝑅 ) |
115 |
|
fveq2 |
⊢ ( 𝑟 = 𝑍 → ( 𝑐 ‘ 𝑟 ) = ( 𝑐 ‘ 𝑍 ) ) |
116 |
111 112 61 113 114 107 115 109
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) = ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) ) |
117 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
118 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
119 |
117 118
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
120 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ↔ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∧ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
121 |
119 120
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∧ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
122 |
121
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) |
123 |
110 116 122
|
3eqtr3a |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) = 𝐽 ) |
124 |
108 109 123
|
mvlraddd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
125 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
126 |
106 125
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
127 |
86 87 91 93 126
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
128 |
85 127
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
129 |
83 128
|
ralrimia |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
130 |
|
ffnfv |
⊢ ( ( 𝑐 ↾ 𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↔ ( ( 𝑐 ↾ 𝑅 ) Fn 𝑅 ∧ ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
131 |
66 129 130
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
132 |
58 61 131
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ) |
133 |
84
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑡 ∈ 𝑅 → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) ) |
134 |
83 133
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
135 |
134
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) ) |
136 |
104
|
cbvsumv |
⊢ Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) |
137 |
136
|
eqcomi |
⊢ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) |
138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ) |
139 |
135 138 124
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
140 |
57 132 139
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
141 |
|
fveq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
142 |
141
|
sumeq2sdv |
⊢ ( 𝑐 = 𝑒 → Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) ) |
143 |
142
|
eqeq1d |
⊢ ( 𝑐 = 𝑒 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 ) ) |
144 |
143
|
cbvrabv |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } |
145 |
144
|
a1i |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } ) |
146 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( 0 ... 𝑚 ) = ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
147 |
146
|
oveq1d |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( ( 0 ... 𝑚 ) ↑m 𝑅 ) = ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ) |
148 |
147
|
rabeqdv |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } ) |
149 |
|
eqeq2 |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
150 |
149
|
rabbidv |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
151 |
145 148 150
|
3eqtrd |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
152 |
|
oveq2 |
⊢ ( 𝑠 = 𝑅 → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ) |
153 |
|
sumeq1 |
⊢ ( 𝑠 = 𝑅 → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) ) |
154 |
153
|
eqeq1d |
⊢ ( 𝑠 = 𝑅 → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
155 |
152 154
|
rabeqbidv |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
156 |
155
|
mpteq2dv |
⊢ ( 𝑠 = 𝑅 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
157 |
4 59
|
sselpwd |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 𝑇 ) |
158 |
22
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
159 |
158
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
160 |
1 156 157 159
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
162 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 0 ... 𝑛 ) = ( 0 ... 𝑚 ) ) |
163 |
162
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ) |
164 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑚 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 ) ) |
165 |
163 164
|
rabeqbidv |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) |
166 |
165
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) |
167 |
161 166
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) ) |
168 |
|
elnn0z |
⊢ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ0 ↔ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ∧ 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
169 |
41 47 168
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ0 ) |
170 |
|
ovex |
⊢ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∈ V |
171 |
170
|
rabex |
⊢ { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ∈ V |
172 |
171
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ∈ V ) |
173 |
151 167 169 172
|
fvmptd4 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
174 |
140 173
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
175 |
52 174
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
176 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V ) |
177 |
|
vex |
⊢ 𝑐 ∈ V |
178 |
177
|
resex |
⊢ ( 𝑐 ↾ 𝑅 ) ∈ V |
179 |
|
opeq12 |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → 〈 𝑘 , 𝑑 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
180 |
179
|
eqeq2d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ↔ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
181 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) ) |
183 |
|
simpr |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → 𝑑 = ( 𝑐 ↾ 𝑅 ) ) |
184 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
185 |
184
|
adantr |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
186 |
183 185
|
eleq12d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ↔ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
187 |
182 186
|
anbi12d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
188 |
180 187
|
anbi12d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ↔ ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) ) |
189 |
188
|
spc2egv |
⊢ ( ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V ∧ ( 𝑐 ↾ 𝑅 ) ∈ V ) → ( ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) → ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) ) |
190 |
176 178 189
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) → ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) ) |
191 |
8 175 190
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
192 |
|
eliunxp |
⊢ ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
193 |
191 192
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
194 |
193 3
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
195 |
81
|
nfcri |
⊢ Ⅎ 𝑡 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) |
196 |
82 195
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
197 |
67 196
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) |
198 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) |
199 |
197 198
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) |
200 |
85
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
201 |
200
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
202 |
201
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
203 |
3
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↦ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
204 |
|
opex |
⊢ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V |
205 |
204
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V ) |
206 |
203 205
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
207 |
206
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
208 |
207
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) = ( ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ‘ 𝑡 ) ) |
209 |
|
ovex |
⊢ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V |
210 |
209 178
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) = ( 𝑐 ↾ 𝑅 ) |
211 |
210
|
fveq1i |
⊢ ( ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) |
212 |
208 211
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) |
213 |
212
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) |
214 |
213
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) |
215 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) |
216 |
|
fveq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
217 |
216
|
oveq2d |
⊢ ( 𝑐 = 𝑒 → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) |
218 |
|
reseq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ↾ 𝑅 ) = ( 𝑒 ↾ 𝑅 ) ) |
219 |
217 218
|
opeq12d |
⊢ ( 𝑐 = 𝑒 → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
220 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
221 |
|
opex |
⊢ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ∈ V |
222 |
221
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ∈ V ) |
223 |
3 219 220 222
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐷 ‘ 𝑒 ) = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
224 |
223
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐷 ‘ 𝑒 ) = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
225 |
215 224
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
226 |
225
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
227 |
226
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
228 |
227
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
229 |
|
ovex |
⊢ ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ∈ V |
230 |
|
vex |
⊢ 𝑒 ∈ V |
231 |
230
|
resex |
⊢ ( 𝑒 ↾ 𝑅 ) ∈ V |
232 |
229 231
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝑒 ↾ 𝑅 ) |
233 |
228 232
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 𝑒 ↾ 𝑅 ) ) |
234 |
233
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) = ( ( 𝑒 ↾ 𝑅 ) ‘ 𝑡 ) ) |
235 |
|
fvres |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 𝑒 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
236 |
235
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑒 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
237 |
234 236
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
238 |
202 214 237
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
239 |
238
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
240 |
|
elunnel1 |
⊢ ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ { 𝑍 } ) |
241 |
|
elsni |
⊢ ( 𝑡 ∈ { 𝑍 } → 𝑡 = 𝑍 ) |
242 |
240 241
|
syl |
⊢ ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 = 𝑍 ) |
243 |
242
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 = 𝑍 ) |
244 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → 𝑡 = 𝑍 ) |
245 |
244
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑍 ) ) |
246 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
247 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℂ ) |
248 |
247 109
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝑐 ‘ 𝑍 ) ) |
249 |
248
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
250 |
249
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
251 |
250
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
252 |
206
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 1st ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
253 |
209 178
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) |
254 |
252 253
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) |
255 |
254
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) |
256 |
255
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) |
257 |
256
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) |
258 |
|
fveq2 |
⊢ ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) ) |
259 |
258
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) ) |
260 |
223
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) = ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
261 |
260
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) = ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
262 |
229 231
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) |
263 |
262
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) |
264 |
259 261 263
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) |
265 |
264
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) = ( 𝐽 − ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) ) |
266 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℂ ) |
267 |
|
fzsscn |
⊢ ( 0 ... 𝐽 ) ⊆ ℂ |
268 |
|
eleq1w |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↔ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) |
269 |
268
|
anbi2d |
⊢ ( 𝑐 = 𝑒 → ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ↔ ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ) |
270 |
|
feq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ↔ 𝑒 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) |
271 |
269 270
|
imbi12d |
⊢ ( 𝑐 = 𝑒 → ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) ) |
272 |
271 34
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
273 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
274 |
272 273
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑒 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) |
275 |
267 274
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑒 ‘ 𝑍 ) ∈ ℂ ) |
276 |
266 275
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
277 |
276
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
278 |
265 277
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
279 |
278
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
280 |
251 257 279
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
281 |
280
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
282 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝑒 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑍 ) ) |
283 |
282
|
eqcomd |
⊢ ( 𝑡 = 𝑍 → ( 𝑒 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑡 ) ) |
284 |
283
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑒 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑡 ) ) |
285 |
245 281 284
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
286 |
285
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
287 |
243 286
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
288 |
239 287
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
289 |
199 288
|
ralrimia |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
290 |
63
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
291 |
290
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
292 |
272
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
293 |
292
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
294 |
293
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
295 |
|
eqfnfv |
⊢ ( ( 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ∧ 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 = 𝑒 ↔ ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) ) |
296 |
291 294 295
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑐 = 𝑒 ↔ ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) ) |
297 |
289 296
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → 𝑐 = 𝑒 ) |
298 |
297
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) |
299 |
298
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) |
300 |
|
dff13 |
⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∀ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) ) |
301 |
194 299 300
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
302 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
303 |
302
|
biimpi |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
304 |
303
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
305 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
306 |
|
nfiu1 |
⊢ Ⅎ 𝑘 ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
307 |
306
|
nfcri |
⊢ Ⅎ 𝑘 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
308 |
305 307
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
309 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } |
310 |
|
eleq1w |
⊢ ( 𝑡 = 𝑟 → ( 𝑡 ∈ 𝑅 ↔ 𝑟 ∈ 𝑅 ) ) |
311 |
|
fveq2 |
⊢ ( 𝑡 = 𝑟 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) ) |
312 |
310 311
|
ifbieq1d |
⊢ ( 𝑡 = 𝑟 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
313 |
312
|
cbvmptv |
⊢ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
314 |
313
|
eqeq2i |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↔ 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
315 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) |
316 |
315
|
sumeq2sdv |
⊢ ( 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) |
317 |
314 316
|
sylbi |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) |
318 |
317
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = 𝐽 ) ) |
319 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 0 ... 𝐽 ) ∈ V ) |
320 |
4 7
|
ssexd |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ V ) |
321 |
320
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑅 ∪ { 𝑍 } ) ∈ V ) |
322 |
|
nfv |
⊢ Ⅎ 𝑡 𝑘 ∈ ( 0 ... 𝐽 ) |
323 |
|
nfcv |
⊢ Ⅎ 𝑡 { 𝑘 } |
324 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑅 |
325 |
77 324
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐶 ‘ 𝑅 ) |
326 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑘 |
327 |
325 326
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) |
328 |
323 327
|
nfxp |
⊢ Ⅎ 𝑡 ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
329 |
328
|
nfcri |
⊢ Ⅎ 𝑡 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
330 |
67 322 329
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
331 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 0 ∈ ℤ ) |
332 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝐽 ∈ ℤ ) |
333 |
332
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝐽 ∈ ℤ ) |
334 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝑅 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
335 |
334
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
336 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
337 |
336
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
338 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 0 ... 𝑛 ) = ( 0 ... 𝑘 ) ) |
339 |
338
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
340 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑘 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 ) ) |
341 |
339 340
|
rabeqbidv |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
342 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
343 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℕ0 ) |
344 |
343
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℕ0 ) |
345 |
|
ovex |
⊢ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∈ V |
346 |
345
|
rabex |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ V |
347 |
346
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ V ) |
348 |
341 342 344 347
|
fvmptd4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
349 |
348
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
350 |
337 349
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
351 |
|
elrabi |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } → ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
352 |
|
elmapi |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
353 |
350 351 352
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
354 |
353
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
355 |
354
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ) |
356 |
355
|
elfzelzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℤ ) |
357 |
335 356
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
358 |
242
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 = 𝑍 ) |
359 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → 𝑡 = 𝑍 ) |
360 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → ¬ 𝑍 ∈ 𝑅 ) |
361 |
359 360
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → ¬ 𝑡 ∈ 𝑅 ) |
362 |
361
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
363 |
362
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
364 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → 𝐽 ∈ ℤ ) |
365 |
364
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → 𝐽 ∈ ℤ ) |
366 |
|
xp1st |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ { 𝑘 } ) |
367 |
|
elsni |
⊢ ( ( 1st ‘ 𝑝 ) ∈ { 𝑘 } → ( 1st ‘ 𝑝 ) = 𝑘 ) |
368 |
366 367
|
syl |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
369 |
368
|
adantl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
370 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
371 |
370
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ℤ ) |
372 |
369 371
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
373 |
372
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
374 |
373
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
375 |
365 374
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ℤ ) |
376 |
363 375
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
377 |
376
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
378 |
358 377
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
379 |
357 378
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
380 |
353
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ) |
381 |
|
elfzle1 |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → 0 ≤ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
382 |
380 381
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
383 |
334
|
eqcomd |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
384 |
383
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
385 |
382 384
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
386 |
385
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
387 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
388 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ≤ 𝐽 ) |
389 |
|
elfzel2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ℤ ) |
390 |
389
|
zred |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ℝ ) |
391 |
95
|
sseli |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℝ ) |
392 |
390 391
|
subge0d |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ≤ ( 𝐽 − 𝑘 ) ↔ 𝑘 ≤ 𝐽 ) ) |
393 |
388 392
|
mpbird |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
394 |
393
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑡 = 𝑍 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
395 |
394
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
396 |
361
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ¬ 𝑡 ∈ 𝑅 ) |
397 |
396
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
398 |
368
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
399 |
398
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) = ( 𝐽 − 𝑘 ) ) |
400 |
399
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) = ( 𝐽 − 𝑘 ) ) |
401 |
397 400
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − 𝑘 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
402 |
395 401
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
403 |
387 358 402
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
404 |
386 403
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
405 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
406 |
|
elfzelz |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℤ ) |
407 |
406
|
zred |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℝ ) |
408 |
407
|
adantr |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℝ ) |
409 |
391
|
adantl |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℝ ) |
410 |
390
|
adantl |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
411 |
|
elfzle2 |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝑘 ) |
412 |
411
|
adantr |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝑘 ) |
413 |
388
|
adantl |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ≤ 𝐽 ) |
414 |
408 409 410 412 413
|
letrd |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝐽 ) |
415 |
380 405 414
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝐽 ) |
416 |
415
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝐽 ) |
417 |
335 416
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
418 |
344
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 0 ≤ 𝑘 ) |
419 |
390
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
420 |
391
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℝ ) |
421 |
419 420
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 ≤ 𝑘 ↔ ( 𝐽 − 𝑘 ) ≤ 𝐽 ) ) |
422 |
418 421
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
423 |
422
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
424 |
423
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
425 |
401 424
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
426 |
387 358 425
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
427 |
417 426
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
428 |
331 333 379 404 427
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ( 0 ... 𝐽 ) ) |
429 |
330 428
|
fmptd2f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
430 |
319 321 429
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
431 |
|
eleq1w |
⊢ ( 𝑟 = 𝑡 → ( 𝑟 ∈ 𝑅 ↔ 𝑡 ∈ 𝑅 ) ) |
432 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
433 |
431 432
|
ifbieq1d |
⊢ ( 𝑟 = 𝑡 → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
434 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
435 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
436 |
433 434 435 379
|
fvmptd4 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
437 |
330 436
|
ralrimia |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
438 |
437
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
439 |
|
nfcv |
⊢ Ⅎ 𝑡 if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
440 |
60
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑅 ∈ Fin ) |
441 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑍 ∈ 𝑇 ) |
442 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ¬ 𝑍 ∈ 𝑅 ) |
443 |
334
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
444 |
380
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℤ ) |
445 |
444
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℂ ) |
446 |
443 445
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℂ ) |
447 |
|
eleq1 |
⊢ ( 𝑡 = 𝑍 → ( 𝑡 ∈ 𝑅 ↔ 𝑍 ∈ 𝑅 ) ) |
448 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) ) |
449 |
447 448
|
ifbieq1d |
⊢ ( 𝑡 = 𝑍 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
450 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ¬ 𝑍 ∈ 𝑅 ) |
451 |
450
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
452 |
451
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
453 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝐽 ∈ ℤ ) |
454 |
453 373
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ℤ ) |
455 |
454
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ℂ ) |
456 |
452 455
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℂ ) |
457 |
330 439 440 441 442 446 449 456
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) + if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
458 |
334
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) |
459 |
330 458
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∀ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
460 |
459
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
461 |
|
eqidd |
⊢ ( 𝑐 = ( 2nd ‘ 𝑝 ) → 𝑅 = 𝑅 ) |
462 |
|
simpl |
⊢ ( ( 𝑐 = ( 2nd ‘ 𝑝 ) ∧ 𝑡 ∈ 𝑅 ) → 𝑐 = ( 2nd ‘ 𝑝 ) ) |
463 |
462
|
fveq1d |
⊢ ( ( 𝑐 = ( 2nd ‘ 𝑝 ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
464 |
461 463
|
sumeq12rdv |
⊢ ( 𝑐 = ( 2nd ‘ 𝑝 ) → Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
465 |
464
|
eqeq1d |
⊢ ( 𝑐 = ( 2nd ‘ 𝑝 ) → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 ↔ Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) ) |
466 |
465
|
elrab |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ↔ ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∧ Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) ) |
467 |
350 466
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∧ Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) ) |
468 |
467
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) |
469 |
460 468
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = 𝑘 ) |
470 |
442
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
471 |
470 399
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − 𝑘 ) ) |
472 |
469 471
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) + if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑘 + ( 𝐽 − 𝑘 ) ) ) |
473 |
267
|
sseli |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℂ ) |
474 |
473
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ℂ ) |
475 |
246
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝐽 ∈ ℂ ) |
476 |
474 475
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 + ( 𝐽 − 𝑘 ) ) = 𝐽 ) |
477 |
472 476
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) + if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = 𝐽 ) |
478 |
438 457 477
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = 𝐽 ) |
479 |
318 430 478
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
480 |
479
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) ) ) |
481 |
480
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) ) ) |
482 |
308 309 481
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) ) |
483 |
304 482
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
484 |
29
|
eqcomd |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } = ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
485 |
484
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } = ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
486 |
483 485
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
487 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
488 |
487 313
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
489 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → 𝑟 = 𝑍 ) |
490 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → ¬ 𝑍 ∈ 𝑅 ) |
491 |
489 490
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → ¬ 𝑟 ∈ 𝑅 ) |
492 |
491
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
493 |
492
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ∧ 𝑟 = 𝑍 ) → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
494 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
495 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ V ) |
496 |
488 493 494 495
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
497 |
496
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
498 |
497
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
499 |
246
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝐽 ∈ ℂ ) |
500 |
|
nfv |
⊢ Ⅎ 𝑘 ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) |
501 |
|
simpl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
502 |
369 501
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
503 |
502
|
ex |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) |
504 |
503
|
a1i |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) ) |
505 |
307 500 504
|
rexlimd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) |
506 |
303 505
|
mpd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
507 |
506
|
elfzelzd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
508 |
507
|
zcnd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ℂ ) |
509 |
508
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℂ ) |
510 |
499 509
|
nncand |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 1st ‘ 𝑝 ) ) |
511 |
498 510
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 1st ‘ 𝑝 ) ) |
512 |
|
reseq1 |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( 𝑐 ↾ 𝑅 ) = ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↾ 𝑅 ) ) |
513 |
512
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑐 ↾ 𝑅 ) = ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↾ 𝑅 ) ) |
514 |
64
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) ) |
515 |
514
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↾ 𝑅 ) = ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
516 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) |
517 |
334
|
mpteq2ia |
⊢ ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑡 ∈ 𝑅 ↦ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
518 |
353
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) = ( 𝑡 ∈ 𝑅 ↦ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) |
519 |
517 518
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) |
520 |
519
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) ) ) |
521 |
520
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) ) ) |
522 |
308 516 521
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) ) |
523 |
304 522
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) |
524 |
523
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) |
525 |
513 515 524
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑐 ↾ 𝑅 ) = ( 2nd ‘ 𝑝 ) ) |
526 |
511 525
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
527 |
|
opex |
⊢ 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ∈ V |
528 |
527
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ∈ V ) |
529 |
3 526 486 528
|
fvmptd2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
530 |
|
nfv |
⊢ Ⅎ 𝑘 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 |
531 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
532 |
531
|
eqcomd |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) |
533 |
532
|
2a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) ) ) |
534 |
308 530 533
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) ) |
535 |
304 534
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) |
536 |
529 535
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑝 = ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ) |
537 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ) |
538 |
537
|
rspceeqv |
⊢ ( ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑝 = ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ) → ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) |
539 |
486 536 538
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) |
540 |
539
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) |
541 |
|
dffo3 |
⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∀ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) ) |
542 |
194 540 541
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
543 |
|
df-f1o |
⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
544 |
301 542 543
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |