Step |
Hyp |
Ref |
Expression |
1 |
|
dvnprodlem1.c |
⊢ 𝐶 = ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
2 |
|
dvnprodlem1.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
3 |
|
dvnprodlem1.d |
⊢ 𝐷 = ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↦ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
4 |
|
dvnprodlem1.t |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
5 |
|
dvnprodlem1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
6 |
|
dvnprodlem1.zr |
⊢ ( 𝜑 → ¬ 𝑍 ∈ 𝑅 ) |
7 |
|
dvnprodlem1.rzt |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) |
8 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
9 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 0 ∈ ℤ ) |
10 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℤ ) |
12 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
13 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
14 |
12 13
|
syl |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
15 |
|
sumeq1 |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
17 |
16
|
rabbidv |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
18 |
14 17
|
eqtrd |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑅 ∪ { 𝑍 } ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
20 |
|
ssexg |
⊢ ( ( ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ∧ 𝑇 ∈ Fin ) → ( 𝑅 ∪ { 𝑍 } ) ∈ V ) |
21 |
7 4 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ V ) |
22 |
|
elpwg |
⊢ ( ( 𝑅 ∪ { 𝑍 } ) ∈ V → ( ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ↔ ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ↔ ( 𝑅 ∪ { 𝑍 } ) ⊆ 𝑇 ) ) |
24 |
7 23
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝑍 } ) ∈ 𝒫 𝑇 ) |
25 |
|
nn0ex |
⊢ ℕ0 ∈ V |
26 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
28 |
1 19 24 27
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
29 |
|
oveq2 |
⊢ ( 𝑛 = 𝐽 → ( 0 ... 𝑛 ) = ( 0 ... 𝐽 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑛 = 𝐽 → ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) = ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
31 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) = ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
32 |
30 31
|
syl |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
33 |
|
eqeq2 |
⊢ ( 𝑛 = 𝐽 → ( Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
34 |
33
|
rabbidv |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
35 |
32 34
|
eqtrd |
⊢ ( 𝑛 = 𝐽 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝐽 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
37 |
|
ovex |
⊢ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∈ V |
38 |
37
|
rabex |
⊢ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ V |
39 |
38
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ∈ V ) |
40 |
28 36 2 39
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
41 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
43 |
40 42
|
eqsstrd |
⊢ ( 𝜑 → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⊆ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
46 |
44 45
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
47 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
49 |
|
snidg |
⊢ ( 𝑍 ∈ 𝑇 → 𝑍 ∈ { 𝑍 } ) |
50 |
5 49
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ { 𝑍 } ) |
51 |
|
elun2 |
⊢ ( 𝑍 ∈ { 𝑍 } → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
52 |
50 51
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
54 |
48 53
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) |
55 |
54
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℤ ) |
56 |
11 55
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ) |
57 |
|
elfzle2 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) |
58 |
54 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) |
59 |
11
|
zred |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℝ ) |
60 |
55
|
zred |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℝ ) |
61 |
59 60
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ↔ ( 𝑐 ‘ 𝑍 ) ≤ 𝐽 ) ) |
62 |
58 61
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
63 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑍 ) ) |
64 |
54 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 0 ≤ ( 𝑐 ‘ 𝑍 ) ) |
65 |
59 60
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ≤ ( 𝑐 ‘ 𝑍 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ≤ 𝐽 ) ) |
66 |
64 65
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ≤ 𝐽 ) |
67 |
9 11 56 62 66
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) |
68 |
|
elmapfn |
⊢ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
69 |
46 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
70 |
|
ssun1 |
⊢ 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) |
71 |
70
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) ) |
72 |
|
fnssres |
⊢ ( ( 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ∧ 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 ↾ 𝑅 ) Fn 𝑅 ) |
73 |
69 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) Fn 𝑅 ) |
74 |
|
nfv |
⊢ Ⅎ 𝑡 𝜑 |
75 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑐 |
76 |
|
nfcv |
⊢ Ⅎ 𝑡 𝒫 𝑇 |
77 |
|
nfcv |
⊢ Ⅎ 𝑡 ℕ0 |
78 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑠 |
79 |
78
|
nfsum1 |
⊢ Ⅎ 𝑡 Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) |
80 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑛 |
81 |
79 80
|
nfeq |
⊢ Ⅎ 𝑡 Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 |
82 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( 0 ... 𝑛 ) ↑m 𝑠 ) |
83 |
81 82
|
nfrabw |
⊢ Ⅎ 𝑡 { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } |
84 |
77 83
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
85 |
76 84
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
86 |
1 85
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐶 |
87 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 𝑅 ∪ { 𝑍 } ) |
88 |
86 87
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) |
89 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐽 |
90 |
88 89
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) |
91 |
75 90
|
nfel |
⊢ Ⅎ 𝑡 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) |
92 |
74 91
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
93 |
|
fvres |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
95 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ∈ ℤ ) |
96 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ) |
97 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
98 |
71
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
99 |
97 98
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) ) |
100 |
99
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ℤ ) |
101 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑡 ) ) |
102 |
99 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ ( 𝑐 ‘ 𝑡 ) ) |
103 |
7
|
unssad |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑇 ) |
104 |
|
ssfi |
⊢ ( ( 𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇 ) → 𝑅 ∈ Fin ) |
105 |
4 103 104
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
106 |
105
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑅 ∈ Fin ) |
107 |
|
fzssz |
⊢ ( 0 ... 𝐽 ) ⊆ ℤ |
108 |
|
zssre |
⊢ ℤ ⊆ ℝ |
109 |
107 108
|
sstri |
⊢ ( 0 ... 𝐽 ) ⊆ ℝ |
110 |
109
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 0 ... 𝐽 ) ⊆ ℝ ) |
111 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
112 |
71
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
113 |
111 112
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ( 0 ... 𝐽 ) ) |
114 |
110 113
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ℝ ) |
115 |
114
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ℝ ) |
116 |
|
elfzle1 |
⊢ ( ( 𝑐 ‘ 𝑟 ) ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝑐 ‘ 𝑟 ) ) |
117 |
113 116
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → 0 ≤ ( 𝑐 ‘ 𝑟 ) ) |
118 |
117
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) ∧ 𝑟 ∈ 𝑅 ) → 0 ≤ ( 𝑐 ‘ 𝑟 ) ) |
119 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( 𝑐 ‘ 𝑟 ) = ( 𝑐 ‘ 𝑡 ) ) |
120 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ 𝑅 ) |
121 |
106 115 118 119 120
|
fsumge1 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ≤ Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ) |
122 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ∈ Fin ) |
123 |
114
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑟 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑟 ) ∈ ℂ ) |
124 |
122 123
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ∈ ℂ ) |
125 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) ∈ ℂ ) |
126 |
124 125
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) − ( 𝑐 ‘ 𝑍 ) ) = Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ) |
127 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
128 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑐 ‘ 𝑍 ) |
129 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ 𝑇 ) |
130 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ¬ 𝑍 ∈ 𝑅 ) |
131 |
|
fveq2 |
⊢ ( 𝑟 = 𝑍 → ( 𝑐 ‘ 𝑟 ) = ( 𝑐 ‘ 𝑍 ) ) |
132 |
127 128 122 129 130 123 131 125
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) = ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) ) |
133 |
132
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) = Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) ) |
134 |
119
|
cbvsumv |
⊢ Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) |
135 |
134
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) ) |
136 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) = { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
137 |
45 136
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
138 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ↔ ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∧ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
139 |
137 138
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∧ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) ) |
140 |
139
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ) |
141 |
135 140
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑟 ) = 𝐽 ) |
142 |
133 141
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) = 𝐽 ) |
143 |
142
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) + ( 𝑐 ‘ 𝑍 ) ) − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
144 |
126 143
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
145 |
144
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
146 |
121 145
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
147 |
95 96 100 102 146
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
148 |
94 147
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
149 |
148
|
ex |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑡 ∈ 𝑅 → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
150 |
92 149
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
151 |
73 150
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑐 ↾ 𝑅 ) Fn 𝑅 ∧ ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
152 |
|
ffnfv |
⊢ ( ( 𝑐 ↾ 𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↔ ( ( 𝑐 ↾ 𝑅 ) Fn 𝑅 ∧ ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ∈ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
153 |
151 152
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
154 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ∈ V ) |
155 |
4 103
|
ssexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑅 ∈ V ) |
157 |
154 156
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑐 ↾ 𝑅 ) ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ↔ ( 𝑐 ↾ 𝑅 ) : 𝑅 ⟶ ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
158 |
153 157
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ) |
159 |
93
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑡 ∈ 𝑅 → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) ) |
160 |
92 159
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∀ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑐 ‘ 𝑡 ) ) |
161 |
160
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) ) |
162 |
119
|
cbvsumv |
⊢ Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) |
163 |
162
|
eqcomi |
⊢ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) |
164 |
163
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) ) |
165 |
144
|
idi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑟 ∈ 𝑅 ( 𝑐 ‘ 𝑟 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
166 |
161 164 165
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
167 |
158 166
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑐 ↾ 𝑅 ) ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∧ Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
168 |
|
eqidd |
⊢ ( 𝑒 = ( 𝑐 ↾ 𝑅 ) → 𝑅 = 𝑅 ) |
169 |
|
simpl |
⊢ ( ( 𝑒 = ( 𝑐 ↾ 𝑅 ) ∧ 𝑡 ∈ 𝑅 ) → 𝑒 = ( 𝑐 ↾ 𝑅 ) ) |
170 |
169
|
fveq1d |
⊢ ( ( 𝑒 = ( 𝑐 ↾ 𝑅 ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑒 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
171 |
168 170
|
sumeq12rdv |
⊢ ( 𝑒 = ( 𝑐 ↾ 𝑅 ) → Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
172 |
171
|
eqeq1d |
⊢ ( 𝑒 = ( 𝑐 ↾ 𝑅 ) → ( Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ↔ Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
173 |
172
|
elrab |
⊢ ( ( 𝑐 ↾ 𝑅 ) ∈ { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ↔ ( ( 𝑐 ↾ 𝑅 ) ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∧ Σ 𝑡 ∈ 𝑅 ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
174 |
167 173
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
175 |
|
oveq2 |
⊢ ( 𝑠 = 𝑅 → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ) |
176 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑅 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
177 |
175 176
|
syl |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
178 |
|
sumeq1 |
⊢ ( 𝑠 = 𝑅 → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) ) |
179 |
178
|
eqeq1d |
⊢ ( 𝑠 = 𝑅 → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
180 |
179
|
rabbidv |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
181 |
177 180
|
eqtrd |
⊢ ( 𝑠 = 𝑅 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
182 |
181
|
mpteq2dv |
⊢ ( 𝑠 = 𝑅 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
183 |
|
elpwg |
⊢ ( 𝑅 ∈ V → ( 𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇 ) ) |
184 |
155 183
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇 ) ) |
185 |
103 184
|
mpbird |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 𝑇 ) |
186 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
187 |
186
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
188 |
1 182 185 187
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
189 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
190 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 0 ... 𝑛 ) = ( 0 ... 𝑚 ) ) |
191 |
190
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ) |
192 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑚 ) ↑m 𝑅 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
193 |
191 192
|
syl |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
194 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑚 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 ) ) |
195 |
194
|
rabbidv |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) |
196 |
193 195
|
eqtrd |
⊢ ( 𝑛 = 𝑚 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) |
197 |
196
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) |
198 |
197
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) ) |
199 |
189 198
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑚 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } ) ) |
200 |
|
fveq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
201 |
200
|
sumeq2sdv |
⊢ ( 𝑐 = 𝑒 → Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) ) |
202 |
201
|
eqeq1d |
⊢ ( 𝑐 = 𝑒 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 ) ) |
203 |
202
|
cbvrabv |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } |
204 |
203
|
a1i |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } ) |
205 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( 0 ... 𝑚 ) = ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
206 |
205
|
oveq1d |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( ( 0 ... 𝑚 ) ↑m 𝑅 ) = ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ) |
207 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑚 ) ↑m 𝑅 ) = ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) → { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } ) |
208 |
206 207
|
syl |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑒 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } ) |
209 |
|
eqeq2 |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
210 |
209
|
rabbidv |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
211 |
204 208 210
|
3eqtrd |
⊢ ( 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
212 |
211
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑚 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) → { 𝑐 ∈ ( ( 0 ... 𝑚 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑚 } = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
213 |
56 62
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ∧ 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
214 |
|
elnn0z |
⊢ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ0 ↔ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℤ ∧ 0 ≤ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
215 |
213 214
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ℕ0 ) |
216 |
|
ovex |
⊢ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∈ V |
217 |
216
|
rabex |
⊢ { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ∈ V |
218 |
217
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ∈ V ) |
219 |
199 212 215 218
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } ) |
220 |
219
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → { 𝑒 ∈ ( ( 0 ... ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑒 ‘ 𝑡 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) } = ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
221 |
174 220
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
222 |
67 221
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
223 |
8 222
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
224 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V ) |
225 |
|
vex |
⊢ 𝑐 ∈ V |
226 |
225
|
resex |
⊢ ( 𝑐 ↾ 𝑅 ) ∈ V |
227 |
226
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ↾ 𝑅 ) ∈ V ) |
228 |
|
opeq12 |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → 〈 𝑘 , 𝑑 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
229 |
228
|
eqeq2d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ↔ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
230 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) ) |
231 |
230
|
adantr |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) ↔ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ) ) |
232 |
|
simpr |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → 𝑑 = ( 𝑐 ↾ 𝑅 ) ) |
233 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
234 |
233
|
adantr |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
235 |
232 234
|
eleq12d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ↔ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) |
236 |
231 235
|
anbi12d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) |
237 |
229 236
|
anbi12d |
⊢ ( ( 𝑘 = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∧ 𝑑 = ( 𝑐 ↾ 𝑅 ) ) → ( ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ↔ ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) ) ) |
238 |
237
|
spc2egv |
⊢ ( ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V ∧ ( 𝑐 ↾ 𝑅 ) ∈ V ) → ( ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) → ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) ) |
239 |
224 227 238
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∧ ( ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ ( 0 ... 𝐽 ) ∧ ( 𝑐 ↾ 𝑅 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) ) → ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) ) |
240 |
223 239
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
241 |
|
eliunxp |
⊢ ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∃ 𝑑 ( 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 𝑘 , 𝑑 〉 ∧ ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑑 ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
242 |
240 241
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
243 |
242 3
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
244 |
90
|
nfcri |
⊢ Ⅎ 𝑡 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) |
245 |
91 244
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
246 |
74 245
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) |
247 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) |
248 |
246 247
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) |
249 |
94
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
250 |
249
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
251 |
250
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
252 |
3
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↦ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
253 |
|
opex |
⊢ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V |
254 |
253
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ∈ V ) |
255 |
252 254
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) |
256 |
255
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
257 |
256
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) = ( ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ‘ 𝑡 ) ) |
258 |
|
ovex |
⊢ ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ∈ V |
259 |
258 226
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) = ( 𝑐 ↾ 𝑅 ) |
260 |
259
|
fveq1i |
⊢ ( ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) |
261 |
260
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 2nd ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ‘ 𝑡 ) = ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) ) |
262 |
257 261
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) |
263 |
262
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) |
264 |
263
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑐 ↾ 𝑅 ) ‘ 𝑡 ) = ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) ) |
265 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) |
266 |
|
fveq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
267 |
266
|
oveq2d |
⊢ ( 𝑐 = 𝑒 → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) |
268 |
|
reseq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ↾ 𝑅 ) = ( 𝑒 ↾ 𝑅 ) ) |
269 |
267 268
|
opeq12d |
⊢ ( 𝑐 = 𝑒 → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
270 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
271 |
|
opex |
⊢ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ∈ V |
272 |
271
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ∈ V ) |
273 |
3 269 270 272
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐷 ‘ 𝑒 ) = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
274 |
273
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐷 ‘ 𝑒 ) = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
275 |
265 274
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐷 ‘ 𝑐 ) = 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) |
276 |
275
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
277 |
276
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
278 |
277
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
279 |
|
ovex |
⊢ ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ∈ V |
280 |
|
vex |
⊢ 𝑒 ∈ V |
281 |
280
|
resex |
⊢ ( 𝑒 ↾ 𝑅 ) ∈ V |
282 |
279 281
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝑒 ↾ 𝑅 ) |
283 |
282
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 2nd ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝑒 ↾ 𝑅 ) ) |
284 |
278 283
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 𝑒 ↾ 𝑅 ) ) |
285 |
284
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) = ( ( 𝑒 ↾ 𝑅 ) ‘ 𝑡 ) ) |
286 |
|
fvres |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 𝑒 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
287 |
286
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 𝑒 ↾ 𝑅 ) ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
288 |
285 287
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ ( 𝐷 ‘ 𝑐 ) ) ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
289 |
251 264 288
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
290 |
289
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
291 |
|
simpl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ) |
292 |
|
elunnel1 |
⊢ ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 ∈ { 𝑍 } ) |
293 |
|
elsni |
⊢ ( 𝑡 ∈ { 𝑍 } → 𝑡 = 𝑍 ) |
294 |
292 293
|
syl |
⊢ ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 = 𝑍 ) |
295 |
294
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 = 𝑍 ) |
296 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → 𝑡 = 𝑍 ) |
297 |
296
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑍 ) ) |
298 |
2
|
nn0cnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
299 |
298
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℂ ) |
300 |
299 125
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝑐 ‘ 𝑍 ) ) |
301 |
300
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
302 |
301
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
303 |
302
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) ) |
304 |
255
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 1st ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
305 |
258 226
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) |
306 |
305
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 1st ‘ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) |
307 |
304 306
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) |
308 |
307
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) |
309 |
308
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) |
310 |
309
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) ) = ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) ) |
311 |
|
fveq2 |
⊢ ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) ) |
312 |
311
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) ) |
313 |
273
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) = ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
314 |
313
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑒 ) ) = ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) ) |
315 |
279 281
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) |
316 |
315
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ 〈 ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) , ( 𝑒 ↾ 𝑅 ) 〉 ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) |
317 |
312 314 316
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) = ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) |
318 |
317
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) = ( 𝐽 − ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) ) |
319 |
298
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝐽 ∈ ℂ ) |
320 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
321 |
107 320
|
sstri |
⊢ ( 0 ... 𝐽 ) ⊆ ℂ |
322 |
321
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 0 ... 𝐽 ) ⊆ ℂ ) |
323 |
|
eleq1w |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↔ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) |
324 |
323
|
anbi2d |
⊢ ( 𝑐 = 𝑒 → ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ↔ ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ) |
325 |
|
feq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ↔ 𝑒 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) |
326 |
324 325
|
imbi12d |
⊢ ( 𝑐 = 𝑒 → ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑐 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ↔ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) ) |
327 |
326 48
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
328 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
329 |
327 328
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑒 ‘ 𝑍 ) ∈ ( 0 ... 𝐽 ) ) |
330 |
322 329
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝑒 ‘ 𝑍 ) ∈ ℂ ) |
331 |
319 330
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
332 |
331
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 𝐽 − ( 𝑒 ‘ 𝑍 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
333 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑒 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
334 |
318 332 333
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
335 |
334
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝐽 − ( 1st ‘ ( 𝐷 ‘ 𝑐 ) ) ) = ( 𝑒 ‘ 𝑍 ) ) |
336 |
303 310 335
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
337 |
336
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑍 ) ) |
338 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝑒 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑍 ) ) |
339 |
338
|
eqcomd |
⊢ ( 𝑡 = 𝑍 → ( 𝑒 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑡 ) ) |
340 |
339
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑒 ‘ 𝑍 ) = ( 𝑒 ‘ 𝑡 ) ) |
341 |
297 337 340
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
342 |
341
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 = 𝑍 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
343 |
291 295 342
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
344 |
290 343
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
345 |
344
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) → ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) ) |
346 |
248 345
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) |
347 |
69
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
348 |
347
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
349 |
327
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) → 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
350 |
349
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
351 |
350
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) |
352 |
|
eqfnfv |
⊢ ( ( 𝑐 Fn ( 𝑅 ∪ { 𝑍 } ) ∧ 𝑒 Fn ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑐 = 𝑒 ↔ ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) ) |
353 |
348 351 352
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → ( 𝑐 = 𝑒 ↔ ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = ( 𝑒 ‘ 𝑡 ) ) ) |
354 |
346 353
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) ∧ ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) ) → 𝑐 = 𝑒 ) |
355 |
354
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) ) → ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) |
356 |
355
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) |
357 |
243 356
|
jca |
⊢ ( 𝜑 → ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∀ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) ) |
358 |
|
dff13 |
⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∀ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∀ 𝑒 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ( ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ 𝑒 ) → 𝑐 = 𝑒 ) ) ) |
359 |
357 358
|
sylibr |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
360 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
361 |
360
|
biimpi |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
362 |
361
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
363 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
364 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑝 |
365 |
|
nfiu1 |
⊢ Ⅎ 𝑘 ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
366 |
364 365
|
nfel |
⊢ Ⅎ 𝑘 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
367 |
363 366
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
368 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } |
369 |
|
nfv |
⊢ Ⅎ 𝑡 𝑘 ∈ ( 0 ... 𝐽 ) |
370 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑝 |
371 |
|
nfcv |
⊢ Ⅎ 𝑡 { 𝑘 } |
372 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑅 |
373 |
86 372
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐶 ‘ 𝑅 ) |
374 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑘 |
375 |
373 374
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) |
376 |
371 375
|
nfxp |
⊢ Ⅎ 𝑡 ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
377 |
370 376
|
nfel |
⊢ Ⅎ 𝑡 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
378 |
74 369 377
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
379 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 0 ∈ ℤ ) |
380 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝐽 ∈ ℤ ) |
381 |
380
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝐽 ∈ ℤ ) |
382 |
|
iftrue |
⊢ ( 𝑡 ∈ 𝑅 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
383 |
382
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
384 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝜑 ) |
385 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
386 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
387 |
386
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) |
388 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐶 ‘ 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
389 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 0 ... 𝑛 ) = ( 0 ... 𝑘 ) ) |
390 |
389
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
391 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑅 ) = ( ( 0 ... 𝑘 ) ↑m 𝑅 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
392 |
390 391
|
syl |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
393 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑘 → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 ) ) |
394 |
393
|
rabbidv |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
395 |
392 394
|
eqtrd |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
396 |
395
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
397 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℕ0 ) |
398 |
397
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℕ0 ) |
399 |
|
ovex |
⊢ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∈ V |
400 |
399
|
rabex |
⊢ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ V |
401 |
400
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ∈ V ) |
402 |
388 396 398 401
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
403 |
402
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) = { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
404 |
387 403
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
405 |
|
elrabi |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } → ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
406 |
405
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
407 |
384 385 404 406
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ) |
408 |
|
elmapi |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
409 |
407 408
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
410 |
409
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 2nd ‘ 𝑝 ) : 𝑅 ⟶ ( 0 ... 𝑘 ) ) |
411 |
410
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ) |
412 |
411
|
elfzelzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℤ ) |
413 |
383 412
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
414 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ) |
415 |
294
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 𝑡 = 𝑍 ) |
416 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → 𝑡 = 𝑍 ) |
417 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → ¬ 𝑍 ∈ 𝑅 ) |
418 |
416 417
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → ¬ 𝑡 ∈ 𝑅 ) |
419 |
418
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
420 |
419
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
421 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 = 𝑍 ) → 𝐽 ∈ ℤ ) |
422 |
421
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → 𝐽 ∈ ℤ ) |
423 |
|
xp1st |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ { 𝑘 } ) |
424 |
|
elsni |
⊢ ( ( 1st ‘ 𝑝 ) ∈ { 𝑘 } → ( 1st ‘ 𝑝 ) = 𝑘 ) |
425 |
423 424
|
syl |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
426 |
425
|
adantl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
427 |
107
|
sseli |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
428 |
427
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ℤ ) |
429 |
426 428
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
430 |
429
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
431 |
430
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
432 |
422 431
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ℤ ) |
433 |
420 432
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
434 |
433
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
435 |
414 415 434
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
436 |
413 435
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℤ ) |
437 |
409
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ) |
438 |
|
elfzle1 |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → 0 ≤ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
439 |
437 438
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
440 |
382
|
eqcomd |
⊢ ( 𝑡 ∈ 𝑅 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
441 |
440
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
442 |
439 441
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
443 |
442
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
444 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
445 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ≤ 𝐽 ) |
446 |
|
elfzel2 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ℤ ) |
447 |
446
|
zred |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝐽 ∈ ℝ ) |
448 |
109
|
sseli |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℝ ) |
449 |
447 448
|
subge0d |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 0 ≤ ( 𝐽 − 𝑘 ) ↔ 𝑘 ≤ 𝐽 ) ) |
450 |
445 449
|
mpbird |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
451 |
450
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑡 = 𝑍 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
452 |
451
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → 0 ≤ ( 𝐽 − 𝑘 ) ) |
453 |
384 418
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ¬ 𝑡 ∈ 𝑅 ) |
454 |
453
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
455 |
426
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
456 |
455
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) = ( 𝐽 − 𝑘 ) ) |
457 |
456
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) = ( 𝐽 − 𝑘 ) ) |
458 |
454 457
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − 𝑘 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
459 |
452 458
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
460 |
444 415 459
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
461 |
443 460
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 0 ≤ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
462 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
463 |
|
fzssz |
⊢ ( 0 ... 𝑘 ) ⊆ ℤ |
464 |
463
|
sseli |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℤ ) |
465 |
464
|
zred |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℝ ) |
466 |
465
|
adantr |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℝ ) |
467 |
448
|
adantl |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℝ ) |
468 |
447
|
adantl |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
469 |
|
elfzle2 |
⊢ ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝑘 ) |
470 |
469
|
adantr |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝑘 ) |
471 |
445
|
adantl |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ≤ 𝐽 ) |
472 |
466 467 468 470 471
|
letrd |
⊢ ( ( ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ( 0 ... 𝑘 ) ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝐽 ) |
473 |
437 462 472
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝐽 ) |
474 |
473
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ≤ 𝐽 ) |
475 |
383 474
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
476 |
458
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − 𝑘 ) ) |
477 |
398
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 0 ≤ 𝑘 ) |
478 |
447
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
479 |
448
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℝ ) |
480 |
478 479
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 ≤ 𝑘 ↔ ( 𝐽 − 𝑘 ) ≤ 𝐽 ) ) |
481 |
477 480
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
482 |
481
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
483 |
482
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → ( 𝐽 − 𝑘 ) ≤ 𝐽 ) |
484 |
476 483
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 = 𝑍 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
485 |
444 415 484
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ ¬ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
486 |
475 485
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ≤ 𝐽 ) |
487 |
379 381 436 461 486
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ( 0 ... 𝐽 ) ) |
488 |
|
eqid |
⊢ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
489 |
378 487 488
|
fmptdf |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) |
490 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 0 ... 𝐽 ) ∈ V ) |
491 |
384 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑅 ∪ { 𝑍 } ) ∈ V ) |
492 |
490 491
|
elmapd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ↔ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) : ( 𝑅 ∪ { 𝑍 } ) ⟶ ( 0 ... 𝐽 ) ) ) |
493 |
489 492
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ) |
494 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
495 |
|
eleq1w |
⊢ ( 𝑟 = 𝑡 → ( 𝑟 ∈ 𝑅 ↔ 𝑡 ∈ 𝑅 ) ) |
496 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
497 |
495 496
|
ifbieq1d |
⊢ ( 𝑟 = 𝑡 → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
498 |
497
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) ∧ 𝑟 = 𝑡 ) → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
499 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
500 |
494 498 499 436
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ) → ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
501 |
500
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) → ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
502 |
378 501
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∀ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
503 |
502
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
504 |
|
nfcv |
⊢ Ⅎ 𝑡 if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
505 |
384 105
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑅 ∈ Fin ) |
506 |
384 5
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑍 ∈ 𝑇 ) |
507 |
384 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ¬ 𝑍 ∈ 𝑅 ) |
508 |
382
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
509 |
437
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℤ ) |
510 |
509
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ∈ ℂ ) |
511 |
508 510
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑡 ∈ 𝑅 ) → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℂ ) |
512 |
|
eleq1 |
⊢ ( 𝑡 = 𝑍 → ( 𝑡 ∈ 𝑅 ↔ 𝑍 ∈ 𝑅 ) ) |
513 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) ) |
514 |
512 513
|
ifbieq1d |
⊢ ( 𝑡 = 𝑍 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
515 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ¬ 𝑍 ∈ 𝑅 ) |
516 |
515
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
517 |
516
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
518 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝐽 ∈ ℤ ) |
519 |
518 430
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ℤ ) |
520 |
519
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ ℂ ) |
521 |
517 520
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ∈ ℂ ) |
522 |
378 504 505 506 507 511 514 521
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) + if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
523 |
382
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) |
524 |
378 523
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∀ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
525 |
524
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
526 |
|
eqidd |
⊢ ( 𝑐 = ( 2nd ‘ 𝑝 ) → 𝑅 = 𝑅 ) |
527 |
|
simpl |
⊢ ( ( 𝑐 = ( 2nd ‘ 𝑝 ) ∧ 𝑡 ∈ 𝑅 ) → 𝑐 = ( 2nd ‘ 𝑝 ) ) |
528 |
527
|
fveq1d |
⊢ ( ( 𝑐 = ( 2nd ‘ 𝑝 ) ∧ 𝑡 ∈ 𝑅 ) → ( 𝑐 ‘ 𝑡 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
529 |
526 528
|
sumeq12rdv |
⊢ ( 𝑐 = ( 2nd ‘ 𝑝 ) → Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
530 |
529
|
eqeq1d |
⊢ ( 𝑐 = ( 2nd ‘ 𝑝 ) → ( Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 ↔ Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) ) |
531 |
530
|
elrab |
⊢ ( ( 2nd ‘ 𝑝 ) ∈ { 𝑐 ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∣ Σ 𝑡 ∈ 𝑅 ( 𝑐 ‘ 𝑡 ) = 𝑘 } ↔ ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∧ Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) ) |
532 |
404 531
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 2nd ‘ 𝑝 ) ∈ ( ( 0 ... 𝑘 ) ↑m 𝑅 ) ∧ Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) ) |
533 |
532
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ 𝑅 ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = 𝑘 ) |
534 |
525 533
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = 𝑘 ) |
535 |
507
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
536 |
535 456
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − 𝑘 ) ) |
537 |
534 536
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) + if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑘 + ( 𝐽 − 𝑘 ) ) ) |
538 |
321
|
sseli |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℂ ) |
539 |
538
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ℂ ) |
540 |
384 298
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝐽 ∈ ℂ ) |
541 |
539 540
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 + ( 𝐽 − 𝑘 ) ) = 𝐽 ) |
542 |
537 541
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( Σ 𝑡 ∈ 𝑅 if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) + if ( 𝑍 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑍 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = 𝐽 ) |
543 |
503 522 542
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = 𝐽 ) |
544 |
493 543
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∧ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = 𝐽 ) ) |
545 |
|
eleq1w |
⊢ ( 𝑡 = 𝑟 → ( 𝑡 ∈ 𝑅 ↔ 𝑟 ∈ 𝑅 ) ) |
546 |
|
fveq2 |
⊢ ( 𝑡 = 𝑟 → ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) = ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) ) |
547 |
545 546
|
ifbieq1d |
⊢ ( 𝑡 = 𝑟 → if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
548 |
547
|
cbvmptv |
⊢ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
549 |
548
|
eqeq2i |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↔ 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
550 |
549
|
biimpi |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
551 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( 𝑐 ‘ 𝑡 ) = ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) |
552 |
551
|
sumeq2sdv |
⊢ ( 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) |
553 |
550 552
|
syl |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) ) |
554 |
553
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 ↔ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = 𝐽 ) ) |
555 |
554
|
elrab |
⊢ ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ↔ ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∧ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ‘ 𝑡 ) = 𝐽 ) ) |
556 |
544 555
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
557 |
556
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) ) ) |
558 |
557
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) ) ) |
559 |
367 368 558
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) ) |
560 |
362 559
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } ) |
561 |
40
|
eqcomd |
⊢ ( 𝜑 → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } = ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
562 |
561
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → { 𝑐 ∈ ( ( 0 ... 𝐽 ) ↑m ( 𝑅 ∪ { 𝑍 } ) ) ∣ Σ 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ( 𝑐 ‘ 𝑡 ) = 𝐽 } = ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
563 |
560 562
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ) |
564 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝐷 = ( 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ↦ 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 ) ) |
565 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
566 |
548
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
567 |
565 566
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑐 = ( 𝑟 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
568 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → 𝑟 = 𝑍 ) |
569 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → ¬ 𝑍 ∈ 𝑅 ) |
570 |
568 569
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → ¬ 𝑟 ∈ 𝑅 ) |
571 |
570
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑟 = 𝑍 ) → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
572 |
571
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ∧ 𝑟 = 𝑍 ) → if ( 𝑟 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑟 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
573 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑍 ∈ ( 𝑅 ∪ { 𝑍 } ) ) |
574 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 1st ‘ 𝑝 ) ) ∈ V ) |
575 |
567 572 573 574
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑐 ‘ 𝑍 ) = ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) |
576 |
575
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
577 |
576
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 𝐽 − ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) |
578 |
298
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝐽 ∈ ℂ ) |
579 |
|
nfv |
⊢ Ⅎ 𝑘 ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) |
580 |
|
simpl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
581 |
|
simpr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ ( 1st ‘ 𝑝 ) = 𝑘 ) → ( 1st ‘ 𝑝 ) = 𝑘 ) |
582 |
|
simpl |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ ( 1st ‘ 𝑝 ) = 𝑘 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
583 |
581 582
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ ( 1st ‘ 𝑝 ) = 𝑘 ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
584 |
580 426 583
|
syl2anc |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
585 |
584
|
ex |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) |
586 |
585
|
a1i |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) ) |
587 |
366 579 586
|
rexlimd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) ) |
588 |
361 587
|
mpd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ( 0 ... 𝐽 ) ) |
589 |
588
|
elfzelzd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ℤ ) |
590 |
589
|
zcnd |
⊢ ( 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 1st ‘ 𝑝 ) ∈ ℂ ) |
591 |
590
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 1st ‘ 𝑝 ) ∈ ℂ ) |
592 |
578 591
|
nncand |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) = ( 1st ‘ 𝑝 ) ) |
593 |
577 592
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) = ( 1st ‘ 𝑝 ) ) |
594 |
|
reseq1 |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( 𝑐 ↾ 𝑅 ) = ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↾ 𝑅 ) ) |
595 |
594
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑐 ↾ 𝑅 ) = ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↾ 𝑅 ) ) |
596 |
70
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 𝑅 ⊆ ( 𝑅 ∪ { 𝑍 } ) ) |
597 |
596
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ↾ 𝑅 ) = ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) |
598 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) |
599 |
382
|
mpteq2ia |
⊢ ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑡 ∈ 𝑅 ↦ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) |
600 |
599
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 𝑡 ∈ 𝑅 ↦ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) |
601 |
409
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 2nd ‘ 𝑝 ) = ( 𝑡 ∈ 𝑅 ↦ ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) ) ) |
602 |
600 601
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ∧ 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) |
603 |
602
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) ) ) |
604 |
603
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) ) ) |
605 |
367 598 604
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) ) |
606 |
362 605
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) |
607 |
606
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑡 ∈ 𝑅 ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) = ( 2nd ‘ 𝑝 ) ) |
608 |
595 597 607
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → ( 𝑐 ↾ 𝑅 ) = ( 2nd ‘ 𝑝 ) ) |
609 |
593 608
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ∧ 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) → 〈 ( 𝐽 − ( 𝑐 ‘ 𝑍 ) ) , ( 𝑐 ↾ 𝑅 ) 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
610 |
|
opex |
⊢ 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ∈ V |
611 |
610
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ∈ V ) |
612 |
564 609 563 611
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
613 |
|
nfv |
⊢ Ⅎ 𝑘 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 |
614 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
615 |
614
|
eqcomd |
⊢ ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) |
616 |
615
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) ) |
617 |
616
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝐽 ) → ( 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) ) ) |
618 |
367 613 617
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ ( 0 ... 𝐽 ) 𝑝 ∈ ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) ) |
619 |
362 618
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 = 𝑝 ) |
620 |
612 619
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → 𝑝 = ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ) |
621 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) → ( 𝐷 ‘ 𝑐 ) = ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ) |
622 |
621
|
rspceeqv |
⊢ ( ( ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ∧ 𝑝 = ( 𝐷 ‘ ( 𝑡 ∈ ( 𝑅 ∪ { 𝑍 } ) ↦ if ( 𝑡 ∈ 𝑅 , ( ( 2nd ‘ 𝑝 ) ‘ 𝑡 ) , ( 𝐽 − ( 1st ‘ 𝑝 ) ) ) ) ) ) → ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) |
623 |
563 620 622
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) |
624 |
623
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) |
625 |
243 624
|
jca |
⊢ ( 𝜑 → ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∀ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) ) |
626 |
|
dffo3 |
⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) ⟶ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ ∀ 𝑝 ∈ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∃ 𝑐 ∈ ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) 𝑝 = ( 𝐷 ‘ 𝑐 ) ) ) |
627 |
625 626
|
sylibr |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
628 |
359 627
|
jca |
⊢ ( 𝜑 → ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
629 |
|
df-f1o |
⊢ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ↔ ( 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) ) |
630 |
628 629
|
sylibr |
⊢ ( 𝜑 → 𝐷 : ( ( 𝐶 ‘ ( 𝑅 ∪ { 𝑍 } ) ) ‘ 𝐽 ) –1-1-onto→ ∪ 𝑘 ∈ ( 0 ... 𝐽 ) ( { 𝑘 } × ( ( 𝐶 ‘ 𝑅 ) ‘ 𝑘 ) ) ) |