Step |
Hyp |
Ref |
Expression |
1 |
|
dvnprodlem1.c |
|- C = ( s e. ~P T |-> ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } ) ) |
2 |
|
dvnprodlem1.j |
|- ( ph -> J e. NN0 ) |
3 |
|
dvnprodlem1.d |
|- D = ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) |-> <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) |
4 |
|
dvnprodlem1.t |
|- ( ph -> T e. Fin ) |
5 |
|
dvnprodlem1.z |
|- ( ph -> Z e. T ) |
6 |
|
dvnprodlem1.zr |
|- ( ph -> -. Z e. R ) |
7 |
|
dvnprodlem1.rzt |
|- ( ph -> ( R u. { Z } ) C_ T ) |
8 |
|
eqidd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) |
9 |
|
0zd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> 0 e. ZZ ) |
10 |
2
|
nn0zd |
|- ( ph -> J e. ZZ ) |
11 |
10
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> J e. ZZ ) |
12 |
|
oveq2 |
|- ( n = J -> ( 0 ... n ) = ( 0 ... J ) ) |
13 |
12
|
oveq1d |
|- ( n = J -> ( ( 0 ... n ) ^m ( R u. { Z } ) ) = ( ( 0 ... J ) ^m ( R u. { Z } ) ) ) |
14 |
|
eqeq2 |
|- ( n = J -> ( sum_ t e. ( R u. { Z } ) ( c ` t ) = n <-> sum_ t e. ( R u. { Z } ) ( c ` t ) = J ) ) |
15 |
13 14
|
rabeqbidv |
|- ( n = J -> { c e. ( ( 0 ... n ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = n } = { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) |
16 |
|
oveq2 |
|- ( s = ( R u. { Z } ) -> ( ( 0 ... n ) ^m s ) = ( ( 0 ... n ) ^m ( R u. { Z } ) ) ) |
17 |
|
sumeq1 |
|- ( s = ( R u. { Z } ) -> sum_ t e. s ( c ` t ) = sum_ t e. ( R u. { Z } ) ( c ` t ) ) |
18 |
17
|
eqeq1d |
|- ( s = ( R u. { Z } ) -> ( sum_ t e. s ( c ` t ) = n <-> sum_ t e. ( R u. { Z } ) ( c ` t ) = n ) ) |
19 |
16 18
|
rabeqbidv |
|- ( s = ( R u. { Z } ) -> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } = { c e. ( ( 0 ... n ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = n } ) |
20 |
19
|
mpteq2dv |
|- ( s = ( R u. { Z } ) -> ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = n } ) ) |
21 |
4 7
|
sselpwd |
|- ( ph -> ( R u. { Z } ) e. ~P T ) |
22 |
|
nn0ex |
|- NN0 e. _V |
23 |
22
|
mptex |
|- ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = n } ) e. _V |
24 |
23
|
a1i |
|- ( ph -> ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = n } ) e. _V ) |
25 |
1 20 21 24
|
fvmptd3 |
|- ( ph -> ( C ` ( R u. { Z } ) ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = n } ) ) |
26 |
|
ovex |
|- ( ( 0 ... J ) ^m ( R u. { Z } ) ) e. _V |
27 |
26
|
rabex |
|- { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } e. _V |
28 |
27
|
a1i |
|- ( ph -> { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } e. _V ) |
29 |
15 25 2 28
|
fvmptd4 |
|- ( ph -> ( ( C ` ( R u. { Z } ) ) ` J ) = { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) |
30 |
|
ssrab2 |
|- { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } C_ ( ( 0 ... J ) ^m ( R u. { Z } ) ) |
31 |
29 30
|
eqsstrdi |
|- ( ph -> ( ( C ` ( R u. { Z } ) ) ` J ) C_ ( ( 0 ... J ) ^m ( R u. { Z } ) ) ) |
32 |
31
|
sselda |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) ) |
33 |
|
elmapi |
|- ( c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) -> c : ( R u. { Z } ) --> ( 0 ... J ) ) |
34 |
32 33
|
syl |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> c : ( R u. { Z } ) --> ( 0 ... J ) ) |
35 |
|
snidg |
|- ( Z e. T -> Z e. { Z } ) |
36 |
|
elun2 |
|- ( Z e. { Z } -> Z e. ( R u. { Z } ) ) |
37 |
5 35 36
|
3syl |
|- ( ph -> Z e. ( R u. { Z } ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> Z e. ( R u. { Z } ) ) |
39 |
34 38
|
ffvelcdmd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c ` Z ) e. ( 0 ... J ) ) |
40 |
39
|
elfzelzd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c ` Z ) e. ZZ ) |
41 |
11 40
|
zsubcld |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( c ` Z ) ) e. ZZ ) |
42 |
|
elfzle2 |
|- ( ( c ` Z ) e. ( 0 ... J ) -> ( c ` Z ) <_ J ) |
43 |
39 42
|
syl |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c ` Z ) <_ J ) |
44 |
11
|
zred |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> J e. RR ) |
45 |
40
|
zred |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c ` Z ) e. RR ) |
46 |
44 45
|
subge0d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( 0 <_ ( J - ( c ` Z ) ) <-> ( c ` Z ) <_ J ) ) |
47 |
43 46
|
mpbird |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> 0 <_ ( J - ( c ` Z ) ) ) |
48 |
|
elfzle1 |
|- ( ( c ` Z ) e. ( 0 ... J ) -> 0 <_ ( c ` Z ) ) |
49 |
39 48
|
syl |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> 0 <_ ( c ` Z ) ) |
50 |
44 45
|
subge02d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( 0 <_ ( c ` Z ) <-> ( J - ( c ` Z ) ) <_ J ) ) |
51 |
49 50
|
mpbid |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( c ` Z ) ) <_ J ) |
52 |
9 11 41 47 51
|
elfzd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( c ` Z ) ) e. ( 0 ... J ) ) |
53 |
|
eqidd |
|- ( e = ( c |` R ) -> R = R ) |
54 |
|
simpl |
|- ( ( e = ( c |` R ) /\ t e. R ) -> e = ( c |` R ) ) |
55 |
54
|
fveq1d |
|- ( ( e = ( c |` R ) /\ t e. R ) -> ( e ` t ) = ( ( c |` R ) ` t ) ) |
56 |
53 55
|
sumeq12rdv |
|- ( e = ( c |` R ) -> sum_ t e. R ( e ` t ) = sum_ t e. R ( ( c |` R ) ` t ) ) |
57 |
56
|
eqeq1d |
|- ( e = ( c |` R ) -> ( sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) <-> sum_ t e. R ( ( c |` R ) ` t ) = ( J - ( c ` Z ) ) ) ) |
58 |
|
ovexd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( 0 ... ( J - ( c ` Z ) ) ) e. _V ) |
59 |
7
|
unssad |
|- ( ph -> R C_ T ) |
60 |
4 59
|
ssfid |
|- ( ph -> R e. Fin ) |
61 |
60
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> R e. Fin ) |
62 |
|
elmapfn |
|- ( c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) -> c Fn ( R u. { Z } ) ) |
63 |
32 62
|
syl |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> c Fn ( R u. { Z } ) ) |
64 |
|
ssun1 |
|- R C_ ( R u. { Z } ) |
65 |
64
|
a1i |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> R C_ ( R u. { Z } ) ) |
66 |
63 65
|
fnssresd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c |` R ) Fn R ) |
67 |
|
nfv |
|- F/ t ph |
68 |
|
nfcv |
|- F/_ t ~P T |
69 |
|
nfcv |
|- F/_ t NN0 |
70 |
|
nfcv |
|- F/_ t s |
71 |
70
|
nfsum1 |
|- F/_ t sum_ t e. s ( c ` t ) |
72 |
71
|
nfeq1 |
|- F/ t sum_ t e. s ( c ` t ) = n |
73 |
|
nfcv |
|- F/_ t ( ( 0 ... n ) ^m s ) |
74 |
72 73
|
nfrabw |
|- F/_ t { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } |
75 |
69 74
|
nfmpt |
|- F/_ t ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } ) |
76 |
68 75
|
nfmpt |
|- F/_ t ( s e. ~P T |-> ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } ) ) |
77 |
1 76
|
nfcxfr |
|- F/_ t C |
78 |
|
nfcv |
|- F/_ t ( R u. { Z } ) |
79 |
77 78
|
nffv |
|- F/_ t ( C ` ( R u. { Z } ) ) |
80 |
|
nfcv |
|- F/_ t J |
81 |
79 80
|
nffv |
|- F/_ t ( ( C ` ( R u. { Z } ) ) ` J ) |
82 |
81
|
nfcri |
|- F/ t c e. ( ( C ` ( R u. { Z } ) ) ` J ) |
83 |
67 82
|
nfan |
|- F/ t ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) |
84 |
|
fvres |
|- ( t e. R -> ( ( c |` R ) ` t ) = ( c ` t ) ) |
85 |
84
|
adantl |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( ( c |` R ) ` t ) = ( c ` t ) ) |
86 |
|
0zd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> 0 e. ZZ ) |
87 |
41
|
adantr |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( J - ( c ` Z ) ) e. ZZ ) |
88 |
34
|
adantr |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> c : ( R u. { Z } ) --> ( 0 ... J ) ) |
89 |
65
|
sselda |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> t e. ( R u. { Z } ) ) |
90 |
88 89
|
ffvelcdmd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( c ` t ) e. ( 0 ... J ) ) |
91 |
90
|
elfzelzd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( c ` t ) e. ZZ ) |
92 |
|
elfzle1 |
|- ( ( c ` t ) e. ( 0 ... J ) -> 0 <_ ( c ` t ) ) |
93 |
90 92
|
syl |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> 0 <_ ( c ` t ) ) |
94 |
60
|
ad2antrr |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> R e. Fin ) |
95 |
|
fzssre |
|- ( 0 ... J ) C_ RR |
96 |
34
|
adantr |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ r e. R ) -> c : ( R u. { Z } ) --> ( 0 ... J ) ) |
97 |
65
|
sselda |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ r e. R ) -> r e. ( R u. { Z } ) ) |
98 |
96 97
|
ffvelcdmd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ r e. R ) -> ( c ` r ) e. ( 0 ... J ) ) |
99 |
95 98
|
sselid |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ r e. R ) -> ( c ` r ) e. RR ) |
100 |
99
|
adantlr |
|- ( ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) /\ r e. R ) -> ( c ` r ) e. RR ) |
101 |
|
elfzle1 |
|- ( ( c ` r ) e. ( 0 ... J ) -> 0 <_ ( c ` r ) ) |
102 |
98 101
|
syl |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ r e. R ) -> 0 <_ ( c ` r ) ) |
103 |
102
|
adantlr |
|- ( ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) /\ r e. R ) -> 0 <_ ( c ` r ) ) |
104 |
|
fveq2 |
|- ( r = t -> ( c ` r ) = ( c ` t ) ) |
105 |
|
simpr |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> t e. R ) |
106 |
94 100 103 104 105
|
fsumge1 |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( c ` t ) <_ sum_ r e. R ( c ` r ) ) |
107 |
99
|
recnd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ r e. R ) -> ( c ` r ) e. CC ) |
108 |
61 107
|
fsumcl |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ r e. R ( c ` r ) e. CC ) |
109 |
40
|
zcnd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c ` Z ) e. CC ) |
110 |
104
|
cbvsumv |
|- sum_ r e. ( R u. { Z } ) ( c ` r ) = sum_ t e. ( R u. { Z } ) ( c ` t ) |
111 |
|
nfv |
|- F/ r ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) |
112 |
|
nfcv |
|- F/_ r ( c ` Z ) |
113 |
5
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> Z e. T ) |
114 |
6
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> -. Z e. R ) |
115 |
|
fveq2 |
|- ( r = Z -> ( c ` r ) = ( c ` Z ) ) |
116 |
111 112 61 113 114 107 115 109
|
fsumsplitsn |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ r e. ( R u. { Z } ) ( c ` r ) = ( sum_ r e. R ( c ` r ) + ( c ` Z ) ) ) |
117 |
|
simpr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) |
118 |
29
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( ( C ` ( R u. { Z } ) ) ` J ) = { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) |
119 |
117 118
|
eleqtrd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> c e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) |
120 |
|
rabid |
|- ( c e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } <-> ( c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) /\ sum_ t e. ( R u. { Z } ) ( c ` t ) = J ) ) |
121 |
119 120
|
sylib |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) /\ sum_ t e. ( R u. { Z } ) ( c ` t ) = J ) ) |
122 |
121
|
simprd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ t e. ( R u. { Z } ) ( c ` t ) = J ) |
123 |
110 116 122
|
3eqtr3a |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( sum_ r e. R ( c ` r ) + ( c ` Z ) ) = J ) |
124 |
108 109 123
|
mvlraddd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ r e. R ( c ` r ) = ( J - ( c ` Z ) ) ) |
125 |
124
|
adantr |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> sum_ r e. R ( c ` r ) = ( J - ( c ` Z ) ) ) |
126 |
106 125
|
breqtrd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( c ` t ) <_ ( J - ( c ` Z ) ) ) |
127 |
86 87 91 93 126
|
elfzd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( c ` t ) e. ( 0 ... ( J - ( c ` Z ) ) ) ) |
128 |
85 127
|
eqeltrd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( ( c |` R ) ` t ) e. ( 0 ... ( J - ( c ` Z ) ) ) ) |
129 |
83 128
|
ralrimia |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> A. t e. R ( ( c |` R ) ` t ) e. ( 0 ... ( J - ( c ` Z ) ) ) ) |
130 |
|
ffnfv |
|- ( ( c |` R ) : R --> ( 0 ... ( J - ( c ` Z ) ) ) <-> ( ( c |` R ) Fn R /\ A. t e. R ( ( c |` R ) ` t ) e. ( 0 ... ( J - ( c ` Z ) ) ) ) ) |
131 |
66 129 130
|
sylanbrc |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c |` R ) : R --> ( 0 ... ( J - ( c ` Z ) ) ) ) |
132 |
58 61 131
|
elmapdd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c |` R ) e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) ) |
133 |
84
|
a1i |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( t e. R -> ( ( c |` R ) ` t ) = ( c ` t ) ) ) |
134 |
83 133
|
ralrimi |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> A. t e. R ( ( c |` R ) ` t ) = ( c ` t ) ) |
135 |
134
|
sumeq2d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ t e. R ( ( c |` R ) ` t ) = sum_ t e. R ( c ` t ) ) |
136 |
104
|
cbvsumv |
|- sum_ r e. R ( c ` r ) = sum_ t e. R ( c ` t ) |
137 |
136
|
eqcomi |
|- sum_ t e. R ( c ` t ) = sum_ r e. R ( c ` r ) |
138 |
137
|
a1i |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ t e. R ( c ` t ) = sum_ r e. R ( c ` r ) ) |
139 |
135 138 124
|
3eqtrd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> sum_ t e. R ( ( c |` R ) ` t ) = ( J - ( c ` Z ) ) ) |
140 |
57 132 139
|
elrabd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c |` R ) e. { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) } ) |
141 |
|
fveq1 |
|- ( c = e -> ( c ` t ) = ( e ` t ) ) |
142 |
141
|
sumeq2sdv |
|- ( c = e -> sum_ t e. R ( c ` t ) = sum_ t e. R ( e ` t ) ) |
143 |
142
|
eqeq1d |
|- ( c = e -> ( sum_ t e. R ( c ` t ) = m <-> sum_ t e. R ( e ` t ) = m ) ) |
144 |
143
|
cbvrabv |
|- { c e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( c ` t ) = m } = { e e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( e ` t ) = m } |
145 |
144
|
a1i |
|- ( m = ( J - ( c ` Z ) ) -> { c e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( c ` t ) = m } = { e e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( e ` t ) = m } ) |
146 |
|
oveq2 |
|- ( m = ( J - ( c ` Z ) ) -> ( 0 ... m ) = ( 0 ... ( J - ( c ` Z ) ) ) ) |
147 |
146
|
oveq1d |
|- ( m = ( J - ( c ` Z ) ) -> ( ( 0 ... m ) ^m R ) = ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) ) |
148 |
147
|
rabeqdv |
|- ( m = ( J - ( c ` Z ) ) -> { e e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( e ` t ) = m } = { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = m } ) |
149 |
|
eqeq2 |
|- ( m = ( J - ( c ` Z ) ) -> ( sum_ t e. R ( e ` t ) = m <-> sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) ) ) |
150 |
149
|
rabbidv |
|- ( m = ( J - ( c ` Z ) ) -> { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = m } = { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) } ) |
151 |
145 148 150
|
3eqtrd |
|- ( m = ( J - ( c ` Z ) ) -> { c e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( c ` t ) = m } = { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) } ) |
152 |
|
oveq2 |
|- ( s = R -> ( ( 0 ... n ) ^m s ) = ( ( 0 ... n ) ^m R ) ) |
153 |
|
sumeq1 |
|- ( s = R -> sum_ t e. s ( c ` t ) = sum_ t e. R ( c ` t ) ) |
154 |
153
|
eqeq1d |
|- ( s = R -> ( sum_ t e. s ( c ` t ) = n <-> sum_ t e. R ( c ` t ) = n ) ) |
155 |
152 154
|
rabeqbidv |
|- ( s = R -> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } = { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) |
156 |
155
|
mpteq2dv |
|- ( s = R -> ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m s ) | sum_ t e. s ( c ` t ) = n } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) ) |
157 |
4 59
|
sselpwd |
|- ( ph -> R e. ~P T ) |
158 |
22
|
mptex |
|- ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) e. _V |
159 |
158
|
a1i |
|- ( ph -> ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) e. _V ) |
160 |
1 156 157 159
|
fvmptd3 |
|- ( ph -> ( C ` R ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) ) |
161 |
160
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( C ` R ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) ) |
162 |
|
oveq2 |
|- ( n = m -> ( 0 ... n ) = ( 0 ... m ) ) |
163 |
162
|
oveq1d |
|- ( n = m -> ( ( 0 ... n ) ^m R ) = ( ( 0 ... m ) ^m R ) ) |
164 |
|
eqeq2 |
|- ( n = m -> ( sum_ t e. R ( c ` t ) = n <-> sum_ t e. R ( c ` t ) = m ) ) |
165 |
163 164
|
rabeqbidv |
|- ( n = m -> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } = { c e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( c ` t ) = m } ) |
166 |
165
|
cbvmptv |
|- ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) = ( m e. NN0 |-> { c e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( c ` t ) = m } ) |
167 |
161 166
|
eqtrdi |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( C ` R ) = ( m e. NN0 |-> { c e. ( ( 0 ... m ) ^m R ) | sum_ t e. R ( c ` t ) = m } ) ) |
168 |
|
elnn0z |
|- ( ( J - ( c ` Z ) ) e. NN0 <-> ( ( J - ( c ` Z ) ) e. ZZ /\ 0 <_ ( J - ( c ` Z ) ) ) ) |
169 |
41 47 168
|
sylanbrc |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( c ` Z ) ) e. NN0 ) |
170 |
|
ovex |
|- ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) e. _V |
171 |
170
|
rabex |
|- { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) } e. _V |
172 |
171
|
a1i |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) } e. _V ) |
173 |
151 167 169 172
|
fvmptd4 |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( ( C ` R ) ` ( J - ( c ` Z ) ) ) = { e e. ( ( 0 ... ( J - ( c ` Z ) ) ) ^m R ) | sum_ t e. R ( e ` t ) = ( J - ( c ` Z ) ) } ) |
174 |
140 173
|
eleqtrrd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) |
175 |
52 174
|
jca |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( ( J - ( c ` Z ) ) e. ( 0 ... J ) /\ ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) ) |
176 |
|
ovexd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( c ` Z ) ) e. _V ) |
177 |
|
vex |
|- c e. _V |
178 |
177
|
resex |
|- ( c |` R ) e. _V |
179 |
|
opeq12 |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> <. k , d >. = <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) |
180 |
179
|
eqeq2d |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. k , d >. <-> <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) ) |
181 |
|
eleq1 |
|- ( k = ( J - ( c ` Z ) ) -> ( k e. ( 0 ... J ) <-> ( J - ( c ` Z ) ) e. ( 0 ... J ) ) ) |
182 |
181
|
adantr |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> ( k e. ( 0 ... J ) <-> ( J - ( c ` Z ) ) e. ( 0 ... J ) ) ) |
183 |
|
simpr |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> d = ( c |` R ) ) |
184 |
|
fveq2 |
|- ( k = ( J - ( c ` Z ) ) -> ( ( C ` R ) ` k ) = ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) |
185 |
184
|
adantr |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> ( ( C ` R ) ` k ) = ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) |
186 |
183 185
|
eleq12d |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> ( d e. ( ( C ` R ) ` k ) <-> ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) ) |
187 |
182 186
|
anbi12d |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> ( ( k e. ( 0 ... J ) /\ d e. ( ( C ` R ) ` k ) ) <-> ( ( J - ( c ` Z ) ) e. ( 0 ... J ) /\ ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) ) ) |
188 |
180 187
|
anbi12d |
|- ( ( k = ( J - ( c ` Z ) ) /\ d = ( c |` R ) ) -> ( ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. k , d >. /\ ( k e. ( 0 ... J ) /\ d e. ( ( C ` R ) ` k ) ) ) <-> ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( J - ( c ` Z ) ) , ( c |` R ) >. /\ ( ( J - ( c ` Z ) ) e. ( 0 ... J ) /\ ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) ) ) ) |
189 |
188
|
spc2egv |
|- ( ( ( J - ( c ` Z ) ) e. _V /\ ( c |` R ) e. _V ) -> ( ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( J - ( c ` Z ) ) , ( c |` R ) >. /\ ( ( J - ( c ` Z ) ) e. ( 0 ... J ) /\ ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) ) -> E. k E. d ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. k , d >. /\ ( k e. ( 0 ... J ) /\ d e. ( ( C ` R ) ` k ) ) ) ) ) |
190 |
176 178 189
|
sylancl |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( J - ( c ` Z ) ) , ( c |` R ) >. /\ ( ( J - ( c ` Z ) ) e. ( 0 ... J ) /\ ( c |` R ) e. ( ( C ` R ) ` ( J - ( c ` Z ) ) ) ) ) -> E. k E. d ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. k , d >. /\ ( k e. ( 0 ... J ) /\ d e. ( ( C ` R ) ` k ) ) ) ) ) |
191 |
8 175 190
|
mp2and |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> E. k E. d ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. k , d >. /\ ( k e. ( 0 ... J ) /\ d e. ( ( C ` R ) ` k ) ) ) ) |
192 |
|
eliunxp |
|- ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) <-> E. k E. d ( <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. k , d >. /\ ( k e. ( 0 ... J ) /\ d e. ( ( C ` R ) ` k ) ) ) ) |
193 |
191 192
|
sylibr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> <. ( J - ( c ` Z ) ) , ( c |` R ) >. e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) |
194 |
193 3
|
fmptd |
|- ( ph -> D : ( ( C ` ( R u. { Z } ) ) ` J ) --> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) |
195 |
81
|
nfcri |
|- F/ t e e. ( ( C ` ( R u. { Z } ) ) ` J ) |
196 |
82 195
|
nfan |
|- F/ t ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) |
197 |
67 196
|
nfan |
|- F/ t ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) |
198 |
|
nfv |
|- F/ t ( D ` c ) = ( D ` e ) |
199 |
197 198
|
nfan |
|- F/ t ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) |
200 |
85
|
eqcomd |
|- ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ t e. R ) -> ( c ` t ) = ( ( c |` R ) ` t ) ) |
201 |
200
|
adantlrr |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ t e. R ) -> ( c ` t ) = ( ( c |` R ) ` t ) ) |
202 |
201
|
adantlr |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( c ` t ) = ( ( c |` R ) ` t ) ) |
203 |
3
|
a1i |
|- ( ph -> D = ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) |-> <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) ) |
204 |
|
opex |
|- <. ( J - ( c ` Z ) ) , ( c |` R ) >. e. _V |
205 |
204
|
a1i |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> <. ( J - ( c ` Z ) ) , ( c |` R ) >. e. _V ) |
206 |
203 205
|
fvmpt2d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( D ` c ) = <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) |
207 |
206
|
fveq2d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( 2nd ` ( D ` c ) ) = ( 2nd ` <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) ) |
208 |
207
|
fveq1d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( ( 2nd ` ( D ` c ) ) ` t ) = ( ( 2nd ` <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) ` t ) ) |
209 |
|
ovex |
|- ( J - ( c ` Z ) ) e. _V |
210 |
209 178
|
op2nd |
|- ( 2nd ` <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) = ( c |` R ) |
211 |
210
|
fveq1i |
|- ( ( 2nd ` <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) ` t ) = ( ( c |` R ) ` t ) |
212 |
208 211
|
eqtr2di |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( ( c |` R ) ` t ) = ( ( 2nd ` ( D ` c ) ) ` t ) ) |
213 |
212
|
adantrr |
|- ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) -> ( ( c |` R ) ` t ) = ( ( 2nd ` ( D ` c ) ) ` t ) ) |
214 |
213
|
ad2antrr |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( ( c |` R ) ` t ) = ( ( 2nd ` ( D ` c ) ) ` t ) ) |
215 |
|
simpr |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( D ` c ) = ( D ` e ) ) |
216 |
|
fveq1 |
|- ( c = e -> ( c ` Z ) = ( e ` Z ) ) |
217 |
216
|
oveq2d |
|- ( c = e -> ( J - ( c ` Z ) ) = ( J - ( e ` Z ) ) ) |
218 |
|
reseq1 |
|- ( c = e -> ( c |` R ) = ( e |` R ) ) |
219 |
217 218
|
opeq12d |
|- ( c = e -> <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) |
220 |
|
simpr |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) |
221 |
|
opex |
|- <. ( J - ( e ` Z ) ) , ( e |` R ) >. e. _V |
222 |
221
|
a1i |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> <. ( J - ( e ` Z ) ) , ( e |` R ) >. e. _V ) |
223 |
3 219 220 222
|
fvmptd3 |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( D ` e ) = <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) |
224 |
223
|
adantr |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( D ` e ) = <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) |
225 |
215 224
|
eqtrd |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( D ` c ) = <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) |
226 |
225
|
fveq2d |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( 2nd ` ( D ` c ) ) = ( 2nd ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) ) |
227 |
226
|
adantlrl |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( 2nd ` ( D ` c ) ) = ( 2nd ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) ) |
228 |
227
|
adantr |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( 2nd ` ( D ` c ) ) = ( 2nd ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) ) |
229 |
|
ovex |
|- ( J - ( e ` Z ) ) e. _V |
230 |
|
vex |
|- e e. _V |
231 |
230
|
resex |
|- ( e |` R ) e. _V |
232 |
229 231
|
op2nd |
|- ( 2nd ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) = ( e |` R ) |
233 |
228 232
|
eqtrdi |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( 2nd ` ( D ` c ) ) = ( e |` R ) ) |
234 |
233
|
fveq1d |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( ( 2nd ` ( D ` c ) ) ` t ) = ( ( e |` R ) ` t ) ) |
235 |
|
fvres |
|- ( t e. R -> ( ( e |` R ) ` t ) = ( e ` t ) ) |
236 |
235
|
adantl |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( ( e |` R ) ` t ) = ( e ` t ) ) |
237 |
234 236
|
eqtrd |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( ( 2nd ` ( D ` c ) ) ` t ) = ( e ` t ) ) |
238 |
202 214 237
|
3eqtrd |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. R ) -> ( c ` t ) = ( e ` t ) ) |
239 |
238
|
adantlr |
|- ( ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> ( c ` t ) = ( e ` t ) ) |
240 |
|
elunnel1 |
|- ( ( t e. ( R u. { Z } ) /\ -. t e. R ) -> t e. { Z } ) |
241 |
|
elsni |
|- ( t e. { Z } -> t = Z ) |
242 |
240 241
|
syl |
|- ( ( t e. ( R u. { Z } ) /\ -. t e. R ) -> t = Z ) |
243 |
242
|
adantll |
|- ( ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> t = Z ) |
244 |
|
simpr |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t = Z ) -> t = Z ) |
245 |
244
|
fveq2d |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t = Z ) -> ( c ` t ) = ( c ` Z ) ) |
246 |
2
|
nn0cnd |
|- ( ph -> J e. CC ) |
247 |
246
|
adantr |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> J e. CC ) |
248 |
247 109
|
nncand |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( J - ( c ` Z ) ) ) = ( c ` Z ) ) |
249 |
248
|
eqcomd |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( c ` Z ) = ( J - ( J - ( c ` Z ) ) ) ) |
250 |
249
|
adantrr |
|- ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) -> ( c ` Z ) = ( J - ( J - ( c ` Z ) ) ) ) |
251 |
250
|
adantr |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( c ` Z ) = ( J - ( J - ( c ` Z ) ) ) ) |
252 |
206
|
fveq2d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( 1st ` ( D ` c ) ) = ( 1st ` <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) ) |
253 |
209 178
|
op1st |
|- ( 1st ` <. ( J - ( c ` Z ) ) , ( c |` R ) >. ) = ( J - ( c ` Z ) ) |
254 |
252 253
|
eqtr2di |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( c ` Z ) ) = ( 1st ` ( D ` c ) ) ) |
255 |
254
|
oveq2d |
|- ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( J - ( c ` Z ) ) ) = ( J - ( 1st ` ( D ` c ) ) ) ) |
256 |
255
|
adantrr |
|- ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) -> ( J - ( J - ( c ` Z ) ) ) = ( J - ( 1st ` ( D ` c ) ) ) ) |
257 |
256
|
adantr |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( J - ( J - ( c ` Z ) ) ) = ( J - ( 1st ` ( D ` c ) ) ) ) |
258 |
|
fveq2 |
|- ( ( D ` c ) = ( D ` e ) -> ( 1st ` ( D ` c ) ) = ( 1st ` ( D ` e ) ) ) |
259 |
258
|
adantl |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( 1st ` ( D ` c ) ) = ( 1st ` ( D ` e ) ) ) |
260 |
223
|
fveq2d |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( 1st ` ( D ` e ) ) = ( 1st ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) ) |
261 |
260
|
adantr |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( 1st ` ( D ` e ) ) = ( 1st ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) ) |
262 |
229 231
|
op1st |
|- ( 1st ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) = ( J - ( e ` Z ) ) |
263 |
262
|
a1i |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( 1st ` <. ( J - ( e ` Z ) ) , ( e |` R ) >. ) = ( J - ( e ` Z ) ) ) |
264 |
259 261 263
|
3eqtrd |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( 1st ` ( D ` c ) ) = ( J - ( e ` Z ) ) ) |
265 |
264
|
oveq2d |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( J - ( 1st ` ( D ` c ) ) ) = ( J - ( J - ( e ` Z ) ) ) ) |
266 |
246
|
adantr |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> J e. CC ) |
267 |
|
fzsscn |
|- ( 0 ... J ) C_ CC |
268 |
|
eleq1w |
|- ( c = e -> ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) <-> e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) |
269 |
268
|
anbi2d |
|- ( c = e -> ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) <-> ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) ) |
270 |
|
feq1 |
|- ( c = e -> ( c : ( R u. { Z } ) --> ( 0 ... J ) <-> e : ( R u. { Z } ) --> ( 0 ... J ) ) ) |
271 |
269 270
|
imbi12d |
|- ( c = e -> ( ( ( ph /\ c e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> c : ( R u. { Z } ) --> ( 0 ... J ) ) <-> ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> e : ( R u. { Z } ) --> ( 0 ... J ) ) ) ) |
272 |
271 34
|
chvarvv |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> e : ( R u. { Z } ) --> ( 0 ... J ) ) |
273 |
37
|
adantr |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> Z e. ( R u. { Z } ) ) |
274 |
272 273
|
ffvelcdmd |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( e ` Z ) e. ( 0 ... J ) ) |
275 |
267 274
|
sselid |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( e ` Z ) e. CC ) |
276 |
266 275
|
nncand |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> ( J - ( J - ( e ` Z ) ) ) = ( e ` Z ) ) |
277 |
276
|
adantr |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( J - ( J - ( e ` Z ) ) ) = ( e ` Z ) ) |
278 |
265 277
|
eqtrd |
|- ( ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( J - ( 1st ` ( D ` c ) ) ) = ( e ` Z ) ) |
279 |
278
|
adantlrl |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( J - ( 1st ` ( D ` c ) ) ) = ( e ` Z ) ) |
280 |
251 257 279
|
3eqtrd |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( c ` Z ) = ( e ` Z ) ) |
281 |
280
|
adantr |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t = Z ) -> ( c ` Z ) = ( e ` Z ) ) |
282 |
|
fveq2 |
|- ( t = Z -> ( e ` t ) = ( e ` Z ) ) |
283 |
282
|
eqcomd |
|- ( t = Z -> ( e ` Z ) = ( e ` t ) ) |
284 |
283
|
adantl |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t = Z ) -> ( e ` Z ) = ( e ` t ) ) |
285 |
245 281 284
|
3eqtrd |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t = Z ) -> ( c ` t ) = ( e ` t ) ) |
286 |
285
|
adantlr |
|- ( ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. ( R u. { Z } ) ) /\ t = Z ) -> ( c ` t ) = ( e ` t ) ) |
287 |
243 286
|
syldan |
|- ( ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> ( c ` t ) = ( e ` t ) ) |
288 |
239 287
|
pm2.61dan |
|- ( ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) /\ t e. ( R u. { Z } ) ) -> ( c ` t ) = ( e ` t ) ) |
289 |
199 288
|
ralrimia |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> A. t e. ( R u. { Z } ) ( c ` t ) = ( e ` t ) ) |
290 |
63
|
adantrr |
|- ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) -> c Fn ( R u. { Z } ) ) |
291 |
290
|
adantr |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> c Fn ( R u. { Z } ) ) |
292 |
272
|
ffnd |
|- ( ( ph /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) -> e Fn ( R u. { Z } ) ) |
293 |
292
|
adantrl |
|- ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) -> e Fn ( R u. { Z } ) ) |
294 |
293
|
adantr |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> e Fn ( R u. { Z } ) ) |
295 |
|
eqfnfv |
|- ( ( c Fn ( R u. { Z } ) /\ e Fn ( R u. { Z } ) ) -> ( c = e <-> A. t e. ( R u. { Z } ) ( c ` t ) = ( e ` t ) ) ) |
296 |
291 294 295
|
syl2anc |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> ( c = e <-> A. t e. ( R u. { Z } ) ( c ` t ) = ( e ` t ) ) ) |
297 |
289 296
|
mpbird |
|- ( ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) /\ ( D ` c ) = ( D ` e ) ) -> c = e ) |
298 |
297
|
ex |
|- ( ( ph /\ ( c e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ e e. ( ( C ` ( R u. { Z } ) ) ` J ) ) ) -> ( ( D ` c ) = ( D ` e ) -> c = e ) ) |
299 |
298
|
ralrimivva |
|- ( ph -> A. c e. ( ( C ` ( R u. { Z } ) ) ` J ) A. e e. ( ( C ` ( R u. { Z } ) ) ` J ) ( ( D ` c ) = ( D ` e ) -> c = e ) ) |
300 |
|
dff13 |
|- ( D : ( ( C ` ( R u. { Z } ) ) ` J ) -1-1-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) <-> ( D : ( ( C ` ( R u. { Z } ) ) ` J ) --> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) /\ A. c e. ( ( C ` ( R u. { Z } ) ) ` J ) A. e e. ( ( C ` ( R u. { Z } ) ) ` J ) ( ( D ` c ) = ( D ` e ) -> c = e ) ) ) |
301 |
194 299 300
|
sylanbrc |
|- ( ph -> D : ( ( C ` ( R u. { Z } ) ) ` J ) -1-1-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) |
302 |
|
eliun |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) <-> E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) ) |
303 |
302
|
biimpi |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) -> E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) ) |
304 |
303
|
adantl |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) ) |
305 |
|
nfv |
|- F/ k ph |
306 |
|
nfiu1 |
|- F/_ k U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) |
307 |
306
|
nfcri |
|- F/ k p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) |
308 |
305 307
|
nfan |
|- F/ k ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) |
309 |
|
nfv |
|- F/ k ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } |
310 |
|
eleq1w |
|- ( t = r -> ( t e. R <-> r e. R ) ) |
311 |
|
fveq2 |
|- ( t = r -> ( ( 2nd ` p ) ` t ) = ( ( 2nd ` p ) ` r ) ) |
312 |
310 311
|
ifbieq1d |
|- ( t = r -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) |
313 |
312
|
cbvmptv |
|- ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) |
314 |
313
|
eqeq2i |
|- ( c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) <-> c = ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ) |
315 |
|
fveq1 |
|- ( c = ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) -> ( c ` t ) = ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) ) |
316 |
315
|
sumeq2sdv |
|- ( c = ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) -> sum_ t e. ( R u. { Z } ) ( c ` t ) = sum_ t e. ( R u. { Z } ) ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) ) |
317 |
314 316
|
sylbi |
|- ( c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) -> sum_ t e. ( R u. { Z } ) ( c ` t ) = sum_ t e. ( R u. { Z } ) ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) ) |
318 |
317
|
eqeq1d |
|- ( c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) -> ( sum_ t e. ( R u. { Z } ) ( c ` t ) = J <-> sum_ t e. ( R u. { Z } ) ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) = J ) ) |
319 |
|
ovexd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 0 ... J ) e. _V ) |
320 |
4 7
|
ssexd |
|- ( ph -> ( R u. { Z } ) e. _V ) |
321 |
320
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( R u. { Z } ) e. _V ) |
322 |
|
nfv |
|- F/ t k e. ( 0 ... J ) |
323 |
|
nfcv |
|- F/_ t { k } |
324 |
|
nfcv |
|- F/_ t R |
325 |
77 324
|
nffv |
|- F/_ t ( C ` R ) |
326 |
|
nfcv |
|- F/_ t k |
327 |
325 326
|
nffv |
|- F/_ t ( ( C ` R ) ` k ) |
328 |
323 327
|
nfxp |
|- F/_ t ( { k } X. ( ( C ` R ) ` k ) ) |
329 |
328
|
nfcri |
|- F/ t p e. ( { k } X. ( ( C ` R ) ` k ) ) |
330 |
67 322 329
|
nf3an |
|- F/ t ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) |
331 |
|
0zd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> 0 e. ZZ ) |
332 |
10
|
adantr |
|- ( ( ph /\ t e. ( R u. { Z } ) ) -> J e. ZZ ) |
333 |
332
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> J e. ZZ ) |
334 |
|
iftrue |
|- ( t e. R -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( ( 2nd ` p ) ` t ) ) |
335 |
334
|
adantl |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( ( 2nd ` p ) ` t ) ) |
336 |
|
xp2nd |
|- ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( 2nd ` p ) e. ( ( C ` R ) ` k ) ) |
337 |
336
|
3ad2ant3 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 2nd ` p ) e. ( ( C ` R ) ` k ) ) |
338 |
|
oveq2 |
|- ( n = k -> ( 0 ... n ) = ( 0 ... k ) ) |
339 |
338
|
oveq1d |
|- ( n = k -> ( ( 0 ... n ) ^m R ) = ( ( 0 ... k ) ^m R ) ) |
340 |
|
eqeq2 |
|- ( n = k -> ( sum_ t e. R ( c ` t ) = n <-> sum_ t e. R ( c ` t ) = k ) ) |
341 |
339 340
|
rabeqbidv |
|- ( n = k -> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } = { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } ) |
342 |
160
|
adantr |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> ( C ` R ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m R ) | sum_ t e. R ( c ` t ) = n } ) ) |
343 |
|
elfznn0 |
|- ( k e. ( 0 ... J ) -> k e. NN0 ) |
344 |
343
|
adantl |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> k e. NN0 ) |
345 |
|
ovex |
|- ( ( 0 ... k ) ^m R ) e. _V |
346 |
345
|
rabex |
|- { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } e. _V |
347 |
346
|
a1i |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } e. _V ) |
348 |
341 342 344 347
|
fvmptd4 |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> ( ( C ` R ) ` k ) = { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } ) |
349 |
348
|
3adant3 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( ( C ` R ) ` k ) = { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } ) |
350 |
337 349
|
eleqtrd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 2nd ` p ) e. { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } ) |
351 |
|
elrabi |
|- ( ( 2nd ` p ) e. { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } -> ( 2nd ` p ) e. ( ( 0 ... k ) ^m R ) ) |
352 |
|
elmapi |
|- ( ( 2nd ` p ) e. ( ( 0 ... k ) ^m R ) -> ( 2nd ` p ) : R --> ( 0 ... k ) ) |
353 |
350 351 352
|
3syl |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 2nd ` p ) : R --> ( 0 ... k ) ) |
354 |
353
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> ( 2nd ` p ) : R --> ( 0 ... k ) ) |
355 |
354
|
ffvelcdmda |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) ) |
356 |
355
|
elfzelzd |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) e. ZZ ) |
357 |
335 356
|
eqeltrd |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. ZZ ) |
358 |
242
|
adantll |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> t = Z ) |
359 |
|
simpr |
|- ( ( ph /\ t = Z ) -> t = Z ) |
360 |
6
|
adantr |
|- ( ( ph /\ t = Z ) -> -. Z e. R ) |
361 |
359 360
|
eqneltrd |
|- ( ( ph /\ t = Z ) -> -. t e. R ) |
362 |
361
|
iffalsed |
|- ( ( ph /\ t = Z ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
363 |
362
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
364 |
10
|
adantr |
|- ( ( ph /\ t = Z ) -> J e. ZZ ) |
365 |
364
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> J e. ZZ ) |
366 |
|
xp1st |
|- ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. { k } ) |
367 |
|
elsni |
|- ( ( 1st ` p ) e. { k } -> ( 1st ` p ) = k ) |
368 |
366 367
|
syl |
|- ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) = k ) |
369 |
368
|
adantl |
|- ( ( k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 1st ` p ) = k ) |
370 |
|
elfzelz |
|- ( k e. ( 0 ... J ) -> k e. ZZ ) |
371 |
370
|
adantr |
|- ( ( k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> k e. ZZ ) |
372 |
369 371
|
eqeltrd |
|- ( ( k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 1st ` p ) e. ZZ ) |
373 |
372
|
3adant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 1st ` p ) e. ZZ ) |
374 |
373
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> ( 1st ` p ) e. ZZ ) |
375 |
365 374
|
zsubcld |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> ( J - ( 1st ` p ) ) e. ZZ ) |
376 |
363 375
|
eqeltrd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. ZZ ) |
377 |
376
|
adantlr |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t = Z ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. ZZ ) |
378 |
358 377
|
syldan |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. ZZ ) |
379 |
357 378
|
pm2.61dan |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. ZZ ) |
380 |
353
|
ffvelcdmda |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) ) |
381 |
|
elfzle1 |
|- ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) -> 0 <_ ( ( 2nd ` p ) ` t ) ) |
382 |
380 381
|
syl |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> 0 <_ ( ( 2nd ` p ) ` t ) ) |
383 |
334
|
eqcomd |
|- ( t e. R -> ( ( 2nd ` p ) ` t ) = if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
384 |
383
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) = if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
385 |
382 384
|
breqtrd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> 0 <_ if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
386 |
385
|
adantlr |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> 0 <_ if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
387 |
|
simpll |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) ) |
388 |
|
elfzle2 |
|- ( k e. ( 0 ... J ) -> k <_ J ) |
389 |
|
elfzel2 |
|- ( k e. ( 0 ... J ) -> J e. ZZ ) |
390 |
389
|
zred |
|- ( k e. ( 0 ... J ) -> J e. RR ) |
391 |
95
|
sseli |
|- ( k e. ( 0 ... J ) -> k e. RR ) |
392 |
390 391
|
subge0d |
|- ( k e. ( 0 ... J ) -> ( 0 <_ ( J - k ) <-> k <_ J ) ) |
393 |
388 392
|
mpbird |
|- ( k e. ( 0 ... J ) -> 0 <_ ( J - k ) ) |
394 |
393
|
adantr |
|- ( ( k e. ( 0 ... J ) /\ t = Z ) -> 0 <_ ( J - k ) ) |
395 |
394
|
3ad2antl2 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> 0 <_ ( J - k ) ) |
396 |
361
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> -. t e. R ) |
397 |
396
|
iffalsed |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
398 |
368
|
3ad2ant3 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 1st ` p ) = k ) |
399 |
398
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( J - ( 1st ` p ) ) = ( J - k ) ) |
400 |
399
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> ( J - ( 1st ` p ) ) = ( J - k ) ) |
401 |
397 400
|
eqtr2d |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> ( J - k ) = if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
402 |
395 401
|
breqtrd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> 0 <_ if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
403 |
387 358 402
|
syl2anc |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> 0 <_ if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
404 |
386 403
|
pm2.61dan |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> 0 <_ if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
405 |
|
simpl2 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> k e. ( 0 ... J ) ) |
406 |
|
elfzelz |
|- ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) -> ( ( 2nd ` p ) ` t ) e. ZZ ) |
407 |
406
|
zred |
|- ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) -> ( ( 2nd ` p ) ` t ) e. RR ) |
408 |
407
|
adantr |
|- ( ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) /\ k e. ( 0 ... J ) ) -> ( ( 2nd ` p ) ` t ) e. RR ) |
409 |
391
|
adantl |
|- ( ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) /\ k e. ( 0 ... J ) ) -> k e. RR ) |
410 |
390
|
adantl |
|- ( ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) /\ k e. ( 0 ... J ) ) -> J e. RR ) |
411 |
|
elfzle2 |
|- ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) -> ( ( 2nd ` p ) ` t ) <_ k ) |
412 |
411
|
adantr |
|- ( ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) /\ k e. ( 0 ... J ) ) -> ( ( 2nd ` p ) ` t ) <_ k ) |
413 |
388
|
adantl |
|- ( ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) /\ k e. ( 0 ... J ) ) -> k <_ J ) |
414 |
408 409 410 412 413
|
letrd |
|- ( ( ( ( 2nd ` p ) ` t ) e. ( 0 ... k ) /\ k e. ( 0 ... J ) ) -> ( ( 2nd ` p ) ` t ) <_ J ) |
415 |
380 405 414
|
syl2anc |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) <_ J ) |
416 |
415
|
adantlr |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) <_ J ) |
417 |
335 416
|
eqbrtrd |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) <_ J ) |
418 |
344
|
nn0ge0d |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> 0 <_ k ) |
419 |
390
|
adantl |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> J e. RR ) |
420 |
391
|
adantl |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> k e. RR ) |
421 |
419 420
|
subge02d |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> ( 0 <_ k <-> ( J - k ) <_ J ) ) |
422 |
418 421
|
mpbid |
|- ( ( ph /\ k e. ( 0 ... J ) ) -> ( J - k ) <_ J ) |
423 |
422
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... J ) ) /\ t = Z ) -> ( J - k ) <_ J ) |
424 |
423
|
3adantl3 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> ( J - k ) <_ J ) |
425 |
401 424
|
eqbrtrrd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t = Z ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) <_ J ) |
426 |
387 358 425
|
syl2anc |
|- ( ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) /\ -. t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) <_ J ) |
427 |
417 426
|
pm2.61dan |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) <_ J ) |
428 |
331 333 379 404 427
|
elfzd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. ( 0 ... J ) ) |
429 |
330 428
|
fmptd2f |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) : ( R u. { Z } ) --> ( 0 ... J ) ) |
430 |
319 321 429
|
elmapdd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) ) |
431 |
|
eleq1w |
|- ( r = t -> ( r e. R <-> t e. R ) ) |
432 |
|
fveq2 |
|- ( r = t -> ( ( 2nd ` p ) ` r ) = ( ( 2nd ` p ) ` t ) ) |
433 |
431 432
|
ifbieq1d |
|- ( r = t -> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) = if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
434 |
|
eqidd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) = ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ) |
435 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> t e. ( R u. { Z } ) ) |
436 |
433 434 435 379
|
fvmptd4 |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. ( R u. { Z } ) ) -> ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) = if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
437 |
330 436
|
ralrimia |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> A. t e. ( R u. { Z } ) ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) = if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
438 |
437
|
sumeq2d |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> sum_ t e. ( R u. { Z } ) ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) = sum_ t e. ( R u. { Z } ) if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |
439 |
|
nfcv |
|- F/_ t if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) |
440 |
60
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> R e. Fin ) |
441 |
5
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> Z e. T ) |
442 |
6
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> -. Z e. R ) |
443 |
334
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( ( 2nd ` p ) ` t ) ) |
444 |
380
|
elfzelzd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) e. ZZ ) |
445 |
444
|
zcnd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> ( ( 2nd ` p ) ` t ) e. CC ) |
446 |
443 445
|
eqeltrd |
|- ( ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) /\ t e. R ) -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) e. CC ) |
447 |
|
eleq1 |
|- ( t = Z -> ( t e. R <-> Z e. R ) ) |
448 |
|
fveq2 |
|- ( t = Z -> ( ( 2nd ` p ) ` t ) = ( ( 2nd ` p ) ` Z ) ) |
449 |
447 448
|
ifbieq1d |
|- ( t = Z -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) ) |
450 |
6
|
adantr |
|- ( ( ph /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> -. Z e. R ) |
451 |
450
|
iffalsed |
|- ( ( ph /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
452 |
451
|
3adant2 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
453 |
10
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> J e. ZZ ) |
454 |
453 373
|
zsubcld |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( J - ( 1st ` p ) ) e. ZZ ) |
455 |
454
|
zcnd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( J - ( 1st ` p ) ) e. CC ) |
456 |
452 455
|
eqeltrd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) e. CC ) |
457 |
330 439 440 441 442 446 449 456
|
fsumsplitsn |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> sum_ t e. ( R u. { Z } ) if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( sum_ t e. R if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) + if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) ) ) |
458 |
334
|
a1i |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. R -> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( ( 2nd ` p ) ` t ) ) ) |
459 |
330 458
|
ralrimi |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> A. t e. R if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = ( ( 2nd ` p ) ` t ) ) |
460 |
459
|
sumeq2d |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> sum_ t e. R if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = sum_ t e. R ( ( 2nd ` p ) ` t ) ) |
461 |
|
eqidd |
|- ( c = ( 2nd ` p ) -> R = R ) |
462 |
|
simpl |
|- ( ( c = ( 2nd ` p ) /\ t e. R ) -> c = ( 2nd ` p ) ) |
463 |
462
|
fveq1d |
|- ( ( c = ( 2nd ` p ) /\ t e. R ) -> ( c ` t ) = ( ( 2nd ` p ) ` t ) ) |
464 |
461 463
|
sumeq12rdv |
|- ( c = ( 2nd ` p ) -> sum_ t e. R ( c ` t ) = sum_ t e. R ( ( 2nd ` p ) ` t ) ) |
465 |
464
|
eqeq1d |
|- ( c = ( 2nd ` p ) -> ( sum_ t e. R ( c ` t ) = k <-> sum_ t e. R ( ( 2nd ` p ) ` t ) = k ) ) |
466 |
465
|
elrab |
|- ( ( 2nd ` p ) e. { c e. ( ( 0 ... k ) ^m R ) | sum_ t e. R ( c ` t ) = k } <-> ( ( 2nd ` p ) e. ( ( 0 ... k ) ^m R ) /\ sum_ t e. R ( ( 2nd ` p ) ` t ) = k ) ) |
467 |
350 466
|
sylib |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( ( 2nd ` p ) e. ( ( 0 ... k ) ^m R ) /\ sum_ t e. R ( ( 2nd ` p ) ` t ) = k ) ) |
468 |
467
|
simprd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> sum_ t e. R ( ( 2nd ` p ) ` t ) = k ) |
469 |
460 468
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> sum_ t e. R if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) = k ) |
470 |
442
|
iffalsed |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
471 |
470 399
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) = ( J - k ) ) |
472 |
469 471
|
oveq12d |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( sum_ t e. R if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) + if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) ) = ( k + ( J - k ) ) ) |
473 |
267
|
sseli |
|- ( k e. ( 0 ... J ) -> k e. CC ) |
474 |
473
|
3ad2ant2 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> k e. CC ) |
475 |
246
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> J e. CC ) |
476 |
474 475
|
pncan3d |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( k + ( J - k ) ) = J ) |
477 |
472 476
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( sum_ t e. R if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) + if ( Z e. R , ( ( 2nd ` p ) ` Z ) , ( J - ( 1st ` p ) ) ) ) = J ) |
478 |
438 457 477
|
3eqtrd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> sum_ t e. ( R u. { Z } ) ( ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ` t ) = J ) |
479 |
318 430 478
|
elrabd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) |
480 |
479
|
3exp |
|- ( ph -> ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) ) ) |
481 |
480
|
adantr |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) ) ) |
482 |
308 309 481
|
rexlimd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) ) |
483 |
304 482
|
mpd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } ) |
484 |
29
|
eqcomd |
|- ( ph -> { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } = ( ( C ` ( R u. { Z } ) ) ` J ) ) |
485 |
484
|
adantr |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> { c e. ( ( 0 ... J ) ^m ( R u. { Z } ) ) | sum_ t e. ( R u. { Z } ) ( c ` t ) = J } = ( ( C ` ( R u. { Z } ) ) ` J ) ) |
486 |
483 485
|
eleqtrd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. ( ( C ` ( R u. { Z } ) ) ` J ) ) |
487 |
|
simpr |
|- ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) |
488 |
487 313
|
eqtrdi |
|- ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> c = ( r e. ( R u. { Z } ) |-> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) ) ) |
489 |
|
simpr |
|- ( ( ph /\ r = Z ) -> r = Z ) |
490 |
6
|
adantr |
|- ( ( ph /\ r = Z ) -> -. Z e. R ) |
491 |
489 490
|
eqneltrd |
|- ( ( ph /\ r = Z ) -> -. r e. R ) |
492 |
491
|
iffalsed |
|- ( ( ph /\ r = Z ) -> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
493 |
492
|
adantlr |
|- ( ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) /\ r = Z ) -> if ( r e. R , ( ( 2nd ` p ) ` r ) , ( J - ( 1st ` p ) ) ) = ( J - ( 1st ` p ) ) ) |
494 |
37
|
adantr |
|- ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> Z e. ( R u. { Z } ) ) |
495 |
|
ovexd |
|- ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( J - ( 1st ` p ) ) e. _V ) |
496 |
488 493 494 495
|
fvmptd |
|- ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( c ` Z ) = ( J - ( 1st ` p ) ) ) |
497 |
496
|
oveq2d |
|- ( ( ph /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( J - ( c ` Z ) ) = ( J - ( J - ( 1st ` p ) ) ) ) |
498 |
497
|
adantlr |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( J - ( c ` Z ) ) = ( J - ( J - ( 1st ` p ) ) ) ) |
499 |
246
|
ad2antrr |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> J e. CC ) |
500 |
|
nfv |
|- F/ k ( 1st ` p ) e. ( 0 ... J ) |
501 |
|
simpl |
|- ( ( k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> k e. ( 0 ... J ) ) |
502 |
369 501
|
eqeltrd |
|- ( ( k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 1st ` p ) e. ( 0 ... J ) ) |
503 |
502
|
ex |
|- ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. ( 0 ... J ) ) ) |
504 |
503
|
a1i |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) -> ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. ( 0 ... J ) ) ) ) |
505 |
307 500 504
|
rexlimd |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) -> ( E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. ( 0 ... J ) ) ) |
506 |
303 505
|
mpd |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. ( 0 ... J ) ) |
507 |
506
|
elfzelzd |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. ZZ ) |
508 |
507
|
zcnd |
|- ( p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) -> ( 1st ` p ) e. CC ) |
509 |
508
|
ad2antlr |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( 1st ` p ) e. CC ) |
510 |
499 509
|
nncand |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( J - ( J - ( 1st ` p ) ) ) = ( 1st ` p ) ) |
511 |
498 510
|
eqtrd |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( J - ( c ` Z ) ) = ( 1st ` p ) ) |
512 |
|
reseq1 |
|- ( c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) -> ( c |` R ) = ( ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |` R ) ) |
513 |
512
|
adantl |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( c |` R ) = ( ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |` R ) ) |
514 |
64
|
a1i |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> R C_ ( R u. { Z } ) ) |
515 |
514
|
resmptd |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) |` R ) = ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) |
516 |
|
nfv |
|- F/ k ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) |
517 |
334
|
mpteq2ia |
|- ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( t e. R |-> ( ( 2nd ` p ) ` t ) ) |
518 |
353
|
feqmptd |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( 2nd ` p ) = ( t e. R |-> ( ( 2nd ` p ) ` t ) ) ) |
519 |
517 518
|
eqtr4id |
|- ( ( ph /\ k e. ( 0 ... J ) /\ p e. ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) ) |
520 |
519
|
3exp |
|- ( ph -> ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) ) ) ) |
521 |
520
|
adantr |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) ) ) ) |
522 |
308 516 521
|
rexlimd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) -> ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) ) ) |
523 |
304 522
|
mpd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) ) |
524 |
523
|
adantr |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( t e. R |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) = ( 2nd ` p ) ) |
525 |
513 515 524
|
3eqtrd |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> ( c |` R ) = ( 2nd ` p ) ) |
526 |
511 525
|
opeq12d |
|- ( ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) /\ c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) -> <. ( J - ( c ` Z ) ) , ( c |` R ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
527 |
|
opex |
|- <. ( 1st ` p ) , ( 2nd ` p ) >. e. _V |
528 |
527
|
a1i |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. e. _V ) |
529 |
3 526 486 528
|
fvmptd2 |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( D ` ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
530 |
|
nfv |
|- F/ k <. ( 1st ` p ) , ( 2nd ` p ) >. = p |
531 |
|
1st2nd2 |
|- ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
532 |
531
|
eqcomd |
|- ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. = p ) |
533 |
532
|
2a1i |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( k e. ( 0 ... J ) -> ( p e. ( { k } X. ( ( C ` R ) ` k ) ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. = p ) ) ) |
534 |
308 530 533
|
rexlimd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> ( E. k e. ( 0 ... J ) p e. ( { k } X. ( ( C ` R ) ` k ) ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. = p ) ) |
535 |
304 534
|
mpd |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> <. ( 1st ` p ) , ( 2nd ` p ) >. = p ) |
536 |
529 535
|
eqtr2d |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> p = ( D ` ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) ) |
537 |
|
fveq2 |
|- ( c = ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) -> ( D ` c ) = ( D ` ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) ) |
538 |
537
|
rspceeqv |
|- ( ( ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) e. ( ( C ` ( R u. { Z } ) ) ` J ) /\ p = ( D ` ( t e. ( R u. { Z } ) |-> if ( t e. R , ( ( 2nd ` p ) ` t ) , ( J - ( 1st ` p ) ) ) ) ) ) -> E. c e. ( ( C ` ( R u. { Z } ) ) ` J ) p = ( D ` c ) ) |
539 |
486 536 538
|
syl2anc |
|- ( ( ph /\ p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) -> E. c e. ( ( C ` ( R u. { Z } ) ) ` J ) p = ( D ` c ) ) |
540 |
539
|
ralrimiva |
|- ( ph -> A. p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) E. c e. ( ( C ` ( R u. { Z } ) ) ` J ) p = ( D ` c ) ) |
541 |
|
dffo3 |
|- ( D : ( ( C ` ( R u. { Z } ) ) ` J ) -onto-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) <-> ( D : ( ( C ` ( R u. { Z } ) ) ` J ) --> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) /\ A. p e. U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) E. c e. ( ( C ` ( R u. { Z } ) ) ` J ) p = ( D ` c ) ) ) |
542 |
194 540 541
|
sylanbrc |
|- ( ph -> D : ( ( C ` ( R u. { Z } ) ) ` J ) -onto-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) |
543 |
|
df-f1o |
|- ( D : ( ( C ` ( R u. { Z } ) ) ` J ) -1-1-onto-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) <-> ( D : ( ( C ` ( R u. { Z } ) ) ` J ) -1-1-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) /\ D : ( ( C ` ( R u. { Z } ) ) ` J ) -onto-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) ) |
544 |
301 542 543
|
sylanbrc |
|- ( ph -> D : ( ( C ` ( R u. { Z } ) ) ` J ) -1-1-onto-> U_ k e. ( 0 ... J ) ( { k } X. ( ( C ` R ) ` k ) ) ) |