| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptfprodlem.xph |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
dvmptfprodlem.iph |
⊢ Ⅎ 𝑖 𝜑 |
| 3 |
|
dvmptfprodlem.jph |
⊢ Ⅎ 𝑗 𝜑 |
| 4 |
|
dvmptfprodlem.if |
⊢ Ⅎ 𝑖 𝐹 |
| 5 |
|
dvmptfprodlem.jg |
⊢ Ⅎ 𝑗 𝐺 |
| 6 |
|
dvmptfprodlem.a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 7 |
|
dvmptfprodlem.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
| 8 |
|
dvmptfprodlem.e |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 9 |
|
dvmptfprodlem.db |
⊢ ( 𝜑 → ¬ 𝐸 ∈ 𝐷 ) |
| 10 |
|
dvmptfprodlem.ss |
⊢ ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 ) |
| 11 |
|
dvmptfprodlem.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 12 |
|
dvmptfprodlem.c |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
| 13 |
|
dvmptfprodlem.dvp |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ 𝐷 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ) ) |
| 14 |
|
dvmptfprodlem.14 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ ℂ ) |
| 15 |
|
dvmptfprodlem.dvf |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐺 ) ) |
| 16 |
|
dvmptfprodlem.f |
⊢ ( 𝑖 = 𝐸 → 𝐴 = 𝐹 ) |
| 17 |
|
dvmptfprodlem.cg |
⊢ ( 𝑗 = 𝐸 → 𝐶 = 𝐺 ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑥 |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑋 |
| 20 |
18 19
|
nfel |
⊢ Ⅎ 𝑖 𝑥 ∈ 𝑋 |
| 21 |
2 20
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
| 22 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Ⅎ 𝑖 𝐹 ) |
| 23 |
|
snfi |
⊢ { 𝐸 } ∈ Fin |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → { 𝐸 } ∈ Fin ) |
| 25 |
|
unfi |
⊢ ( ( 𝐷 ∈ Fin ∧ { 𝐸 } ∈ Fin ) → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin ) |
| 26 |
7 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 ∪ { 𝐸 } ) ∈ Fin ) |
| 28 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝜑 ) |
| 29 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝑥 ∈ 𝑋 ) |
| 32 |
28 30 31 6
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) → 𝐴 ∈ ℂ ) |
| 33 |
|
snidg |
⊢ ( 𝐸 ∈ V → 𝐸 ∈ { 𝐸 } ) |
| 34 |
8 33
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ { 𝐸 } ) |
| 35 |
|
elun2 |
⊢ ( 𝐸 ∈ { 𝐸 } → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 38 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) |
| 39 |
21 22 27 32 37 38
|
fprodsplit1f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 = ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) |
| 40 |
|
difundir |
⊢ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) ) |
| 42 |
|
difsn |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ( 𝐷 ∖ { 𝐸 } ) = 𝐷 ) |
| 43 |
9 42
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∖ { 𝐸 } ) = 𝐷 ) |
| 44 |
|
difid |
⊢ ( { 𝐸 } ∖ { 𝐸 } ) = ∅ |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ( { 𝐸 } ∖ { 𝐸 } ) = ∅ ) |
| 46 |
43 45
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐷 ∖ { 𝐸 } ) ∪ ( { 𝐸 } ∖ { 𝐸 } ) ) = ( 𝐷 ∪ ∅ ) ) |
| 47 |
|
un0 |
⊢ ( 𝐷 ∪ ∅ ) = 𝐷 |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → ( 𝐷 ∪ ∅ ) = 𝐷 ) |
| 49 |
41 46 48
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) = 𝐷 ) |
| 50 |
49
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 = ∏ 𝑖 ∈ 𝐷 𝐴 ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
| 53 |
39 52
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 = ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
| 54 |
1 53
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) ) ) |
| 56 |
10 36
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐼 ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ 𝐼 ) |
| 58 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 60 |
58 57 59
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) |
| 61 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐸 |
| 62 |
|
nfv |
⊢ Ⅎ 𝑖 𝐸 ∈ 𝐼 |
| 63 |
2 62 20
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑖 ℂ |
| 65 |
4 64
|
nfel |
⊢ Ⅎ 𝑖 𝐹 ∈ ℂ |
| 66 |
63 65
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) |
| 67 |
|
ancom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) ↔ ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 68 |
67
|
imbi1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 = 𝐹 ) ) |
| 69 |
|
eqcom |
⊢ ( 𝐴 = 𝐹 ↔ 𝐹 = 𝐴 ) |
| 70 |
69
|
imbi2i |
⊢ ( ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) ) |
| 71 |
68 70
|
bitri |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 = 𝐸 ) → 𝐴 = 𝐹 ) ↔ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) ) |
| 72 |
38 71
|
mpbi |
⊢ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) |
| 73 |
72
|
3adantr2 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) |
| 74 |
73
|
3adant2 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 = 𝐴 ) |
| 75 |
|
simp3 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) |
| 76 |
|
eleq1 |
⊢ ( 𝑖 = 𝐸 → ( 𝑖 ∈ 𝐼 ↔ 𝐸 ∈ 𝐼 ) ) |
| 77 |
76
|
3anbi2d |
⊢ ( 𝑖 = 𝐸 → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 78 |
77
|
imbi1d |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) ) |
| 79 |
78
|
biimpa |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) |
| 80 |
79
|
3adant3 |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) |
| 81 |
75 80
|
mpd |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ ℂ ) |
| 82 |
74 81
|
eqeltrd |
⊢ ( ( 𝑖 = 𝐸 ∧ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ∧ ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 ∈ ℂ ) |
| 83 |
82
|
3exp |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) ) ) |
| 84 |
6
|
2a1i |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) → ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ) ) |
| 85 |
83 84
|
impbid |
⊢ ( 𝑖 = 𝐸 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) ) ) |
| 86 |
61 66 85 6
|
vtoclgf |
⊢ ( 𝐸 ∈ 𝐼 → ( ( 𝜑 ∧ 𝐸 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) ) |
| 87 |
57 60 86
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) |
| 88 |
58 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ Fin ) |
| 89 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝜑 ) |
| 90 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 ) |
| 91 |
|
elun1 |
⊢ ( 𝑖 ∈ 𝐷 → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 93 |
90 92
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐼 ) |
| 94 |
93
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐼 ) |
| 95 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝑥 ∈ 𝑋 ) |
| 96 |
89 94 95 6
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ 𝐷 ) → 𝐴 ∈ ℂ ) |
| 97 |
21 88 96
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ 𝐷 𝐴 ∈ ℂ ) |
| 98 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ 𝑋 |
| 99 |
3 98
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
| 100 |
|
diffi |
⊢ ( 𝐷 ∈ Fin → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
| 101 |
7 100
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
| 103 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) → 𝑖 ∈ 𝐷 ) |
| 104 |
103
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝑖 ∈ 𝐷 ) |
| 105 |
104 96
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
| 106 |
21 102 105
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
| 108 |
12 107
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
| 109 |
99 88 108
|
fsumclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
| 110 |
1 11 87 14 15 97 109 13
|
dvmptmulf |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) ) |
| 111 |
|
nfcv |
⊢ Ⅎ 𝑗 · |
| 112 |
|
nfcv |
⊢ Ⅎ 𝑗 ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 |
| 113 |
5 111 112
|
nfov |
⊢ Ⅎ 𝑗 ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) |
| 114 |
58 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ V ) |
| 115 |
58 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝐸 ∈ 𝐷 ) |
| 116 |
|
diffi |
⊢ ( ( 𝐷 ∪ { 𝐸 } ) ∈ Fin → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin ) |
| 117 |
26 116
|
syl |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin ) |
| 118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ∈ Fin ) |
| 119 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 120 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 121 |
120 32
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
| 122 |
21 118 121
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
| 123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ∈ ℂ ) |
| 124 |
12 123
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
| 125 |
|
sneq |
⊢ ( 𝑗 = 𝐸 → { 𝑗 } = { 𝐸 } ) |
| 126 |
125
|
difeq2d |
⊢ ( 𝑗 = 𝐸 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) |
| 127 |
126
|
prodeq1d |
⊢ ( 𝑗 = 𝐸 → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) |
| 128 |
17 127
|
oveq12d |
⊢ ( 𝑗 = 𝐸 → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) |
| 129 |
49 7
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ∈ Fin ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ∈ Fin ) |
| 131 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝜑 ) |
| 132 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → ( 𝐷 ∪ { 𝐸 } ) ⊆ 𝐼 ) |
| 133 |
|
eldifi |
⊢ ( 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 134 |
133
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) ) |
| 135 |
132 134
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
| 136 |
135
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑖 ∈ 𝐼 ) |
| 137 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝑥 ∈ 𝑋 ) |
| 138 |
131 136 137 6
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) ) → 𝐴 ∈ ℂ ) |
| 139 |
21 130 138
|
fprodclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ∈ ℂ ) |
| 140 |
14 139
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ∈ ℂ ) |
| 141 |
99 113 88 114 115 124 128 140
|
fsumsplitsn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) + ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) ) |
| 142 |
|
difundir |
⊢ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) |
| 143 |
142
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) ) |
| 144 |
|
nfv |
⊢ Ⅎ 𝑥 𝑗 ∈ 𝐷 |
| 145 |
1 144
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) |
| 146 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐸 } → 𝑥 = 𝐸 ) |
| 147 |
146
|
eqcomd |
⊢ ( 𝑥 ∈ { 𝐸 } → 𝐸 = 𝑥 ) |
| 148 |
147
|
adantr |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑥 ) |
| 149 |
|
simpr |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝑥 = 𝑗 ) |
| 150 |
|
eqidd |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝑗 = 𝑗 ) |
| 151 |
148 149 150
|
3eqtrd |
⊢ ( ( 𝑥 ∈ { 𝐸 } ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑗 ) |
| 152 |
151
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝐸 = 𝑗 ) |
| 153 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝑗 ∈ 𝐷 ) |
| 154 |
152 153
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → 𝐸 ∈ 𝐷 ) |
| 155 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) ∧ 𝑥 = 𝑗 ) → ¬ 𝐸 ∈ 𝐷 ) |
| 156 |
154 155
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) → ¬ 𝑥 = 𝑗 ) |
| 157 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑗 } ↔ 𝑥 = 𝑗 ) |
| 158 |
156 157
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝐸 } ) → ¬ 𝑥 ∈ { 𝑗 } ) |
| 159 |
158
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝐸 } → ¬ 𝑥 ∈ { 𝑗 } ) ) |
| 160 |
145 159
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ∀ 𝑥 ∈ { 𝐸 } ¬ 𝑥 ∈ { 𝑗 } ) |
| 161 |
|
disj |
⊢ ( ( { 𝐸 } ∩ { 𝑗 } ) = ∅ ↔ ∀ 𝑥 ∈ { 𝐸 } ¬ 𝑥 ∈ { 𝑗 } ) |
| 162 |
160 161
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( { 𝐸 } ∩ { 𝑗 } ) = ∅ ) |
| 163 |
|
disjdif2 |
⊢ ( ( { 𝐸 } ∩ { 𝑗 } ) = ∅ → ( { 𝐸 } ∖ { 𝑗 } ) = { 𝐸 } ) |
| 164 |
162 163
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( { 𝐸 } ∖ { 𝑗 } ) = { 𝐸 } ) |
| 165 |
164
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐷 ∖ { 𝑗 } ) ∪ ( { 𝐸 } ∖ { 𝑗 } ) ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) ) |
| 166 |
143 165
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) = ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) ) |
| 167 |
166
|
prodeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 ) |
| 168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 ) |
| 169 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ 𝐷 |
| 170 |
21 169
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) |
| 171 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐷 ∖ { 𝑗 } ) ∈ Fin ) |
| 172 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝜑 ) |
| 173 |
172 8
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝐸 ∈ V ) |
| 174 |
|
id |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ 𝐸 ∈ 𝐷 ) |
| 175 |
174
|
intnanrd |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ ( 𝐸 ∈ 𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) ) |
| 176 |
174 175
|
syl |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ ( 𝐸 ∈ 𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) ) |
| 177 |
|
eldif |
⊢ ( 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ↔ ( 𝐸 ∈ 𝐷 ∧ ¬ 𝐸 ∈ { 𝑗 } ) ) |
| 178 |
176 177
|
sylnibr |
⊢ ( ¬ 𝐸 ∈ 𝐷 → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ) |
| 179 |
9 178
|
syl |
⊢ ( 𝜑 → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ) |
| 180 |
172 179
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ¬ 𝐸 ∈ ( 𝐷 ∖ { 𝑗 } ) ) |
| 181 |
105
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
| 182 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → 𝐹 ∈ ℂ ) |
| 183 |
170 4 171 173 180 181 16 182
|
fprodsplitsn |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∖ { 𝑗 } ) ∪ { 𝐸 } ) 𝐴 = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) |
| 184 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) |
| 185 |
168 183 184
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 = ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) |
| 186 |
185
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) ) |
| 187 |
12 107 182
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) ) |
| 188 |
187
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ( ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 · 𝐹 ) ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 189 |
186 188
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 190 |
189
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑗 ∈ 𝐷 → ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) |
| 191 |
99 190
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 192 |
191
|
sumeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = Σ 𝑗 ∈ 𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 193 |
99 88 87 108
|
fsummulc1f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = Σ 𝑗 ∈ 𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 194 |
193
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 195 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 196 |
192 194 195
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) = ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) |
| 197 |
109 87
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ∈ ℂ ) |
| 198 |
196 197
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ∈ ℂ ) |
| 199 |
198 140
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) + ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) ) = ( ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) + Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
| 200 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
| 201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) = ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) ) |
| 202 |
201 196
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝐸 } ) 𝐴 ) + Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) = ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) |
| 203 |
141 199 202
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) = Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) |
| 204 |
1 203
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 · ∏ 𝑖 ∈ 𝐷 𝐴 ) + ( Σ 𝑗 ∈ 𝐷 ( 𝐶 · ∏ 𝑖 ∈ ( 𝐷 ∖ { 𝑗 } ) 𝐴 ) · 𝐹 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |
| 205 |
55 110 204
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑖 ∈ ( 𝐷 ∪ { 𝐸 } ) 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑗 ∈ ( 𝐷 ∪ { 𝐸 } ) ( 𝐶 · ∏ 𝑖 ∈ ( ( 𝐷 ∪ { 𝐸 } ) ∖ { 𝑗 } ) 𝐴 ) ) ) |