| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptfprodlem.xph |
|- F/ x ph |
| 2 |
|
dvmptfprodlem.iph |
|- F/ i ph |
| 3 |
|
dvmptfprodlem.jph |
|- F/ j ph |
| 4 |
|
dvmptfprodlem.if |
|- F/_ i F |
| 5 |
|
dvmptfprodlem.jg |
|- F/_ j G |
| 6 |
|
dvmptfprodlem.a |
|- ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) |
| 7 |
|
dvmptfprodlem.d |
|- ( ph -> D e. Fin ) |
| 8 |
|
dvmptfprodlem.e |
|- ( ph -> E e. _V ) |
| 9 |
|
dvmptfprodlem.db |
|- ( ph -> -. E e. D ) |
| 10 |
|
dvmptfprodlem.ss |
|- ( ph -> ( D u. { E } ) C_ I ) |
| 11 |
|
dvmptfprodlem.s |
|- ( ph -> S e. { RR , CC } ) |
| 12 |
|
dvmptfprodlem.c |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> C e. CC ) |
| 13 |
|
dvmptfprodlem.dvp |
|- ( ph -> ( S _D ( x e. X |-> prod_ i e. D A ) ) = ( x e. X |-> sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) ) ) |
| 14 |
|
dvmptfprodlem.14 |
|- ( ( ph /\ x e. X ) -> G e. CC ) |
| 15 |
|
dvmptfprodlem.dvf |
|- ( ph -> ( S _D ( x e. X |-> F ) ) = ( x e. X |-> G ) ) |
| 16 |
|
dvmptfprodlem.f |
|- ( i = E -> A = F ) |
| 17 |
|
dvmptfprodlem.cg |
|- ( j = E -> C = G ) |
| 18 |
|
nfcv |
|- F/_ i x |
| 19 |
|
nfcv |
|- F/_ i X |
| 20 |
18 19
|
nfel |
|- F/ i x e. X |
| 21 |
2 20
|
nfan |
|- F/ i ( ph /\ x e. X ) |
| 22 |
4
|
a1i |
|- ( ( ph /\ x e. X ) -> F/_ i F ) |
| 23 |
|
snfi |
|- { E } e. Fin |
| 24 |
23
|
a1i |
|- ( ph -> { E } e. Fin ) |
| 25 |
|
unfi |
|- ( ( D e. Fin /\ { E } e. Fin ) -> ( D u. { E } ) e. Fin ) |
| 26 |
7 24 25
|
syl2anc |
|- ( ph -> ( D u. { E } ) e. Fin ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. X ) -> ( D u. { E } ) e. Fin ) |
| 28 |
|
simpll |
|- ( ( ( ph /\ x e. X ) /\ i e. ( D u. { E } ) ) -> ph ) |
| 29 |
10
|
sselda |
|- ( ( ph /\ i e. ( D u. { E } ) ) -> i e. I ) |
| 30 |
29
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ i e. ( D u. { E } ) ) -> i e. I ) |
| 31 |
|
simplr |
|- ( ( ( ph /\ x e. X ) /\ i e. ( D u. { E } ) ) -> x e. X ) |
| 32 |
28 30 31 6
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ i e. ( D u. { E } ) ) -> A e. CC ) |
| 33 |
|
snidg |
|- ( E e. _V -> E e. { E } ) |
| 34 |
8 33
|
syl |
|- ( ph -> E e. { E } ) |
| 35 |
|
elun2 |
|- ( E e. { E } -> E e. ( D u. { E } ) ) |
| 36 |
34 35
|
syl |
|- ( ph -> E e. ( D u. { E } ) ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ x e. X ) -> E e. ( D u. { E } ) ) |
| 38 |
16
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ i = E ) -> A = F ) |
| 39 |
21 22 27 32 37 38
|
fprodsplit1f |
|- ( ( ph /\ x e. X ) -> prod_ i e. ( D u. { E } ) A = ( F x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) ) |
| 40 |
|
difundir |
|- ( ( D u. { E } ) \ { E } ) = ( ( D \ { E } ) u. ( { E } \ { E } ) ) |
| 41 |
40
|
a1i |
|- ( ph -> ( ( D u. { E } ) \ { E } ) = ( ( D \ { E } ) u. ( { E } \ { E } ) ) ) |
| 42 |
|
difsn |
|- ( -. E e. D -> ( D \ { E } ) = D ) |
| 43 |
9 42
|
syl |
|- ( ph -> ( D \ { E } ) = D ) |
| 44 |
|
difid |
|- ( { E } \ { E } ) = (/) |
| 45 |
44
|
a1i |
|- ( ph -> ( { E } \ { E } ) = (/) ) |
| 46 |
43 45
|
uneq12d |
|- ( ph -> ( ( D \ { E } ) u. ( { E } \ { E } ) ) = ( D u. (/) ) ) |
| 47 |
|
un0 |
|- ( D u. (/) ) = D |
| 48 |
47
|
a1i |
|- ( ph -> ( D u. (/) ) = D ) |
| 49 |
41 46 48
|
3eqtrd |
|- ( ph -> ( ( D u. { E } ) \ { E } ) = D ) |
| 50 |
49
|
prodeq1d |
|- ( ph -> prod_ i e. ( ( D u. { E } ) \ { E } ) A = prod_ i e. D A ) |
| 51 |
50
|
oveq2d |
|- ( ph -> ( F x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) = ( F x. prod_ i e. D A ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ x e. X ) -> ( F x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) = ( F x. prod_ i e. D A ) ) |
| 53 |
39 52
|
eqtrd |
|- ( ( ph /\ x e. X ) -> prod_ i e. ( D u. { E } ) A = ( F x. prod_ i e. D A ) ) |
| 54 |
1 53
|
mpteq2da |
|- ( ph -> ( x e. X |-> prod_ i e. ( D u. { E } ) A ) = ( x e. X |-> ( F x. prod_ i e. D A ) ) ) |
| 55 |
54
|
oveq2d |
|- ( ph -> ( S _D ( x e. X |-> prod_ i e. ( D u. { E } ) A ) ) = ( S _D ( x e. X |-> ( F x. prod_ i e. D A ) ) ) ) |
| 56 |
10 36
|
sseldd |
|- ( ph -> E e. I ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ x e. X ) -> E e. I ) |
| 58 |
|
simpl |
|- ( ( ph /\ x e. X ) -> ph ) |
| 59 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 60 |
58 57 59
|
3jca |
|- ( ( ph /\ x e. X ) -> ( ph /\ E e. I /\ x e. X ) ) |
| 61 |
|
nfcv |
|- F/_ i E |
| 62 |
|
nfv |
|- F/ i E e. I |
| 63 |
2 62 20
|
nf3an |
|- F/ i ( ph /\ E e. I /\ x e. X ) |
| 64 |
|
nfcv |
|- F/_ i CC |
| 65 |
4 64
|
nfel |
|- F/ i F e. CC |
| 66 |
63 65
|
nfim |
|- F/ i ( ( ph /\ E e. I /\ x e. X ) -> F e. CC ) |
| 67 |
|
ancom |
|- ( ( ( ph /\ x e. X ) /\ i = E ) <-> ( i = E /\ ( ph /\ x e. X ) ) ) |
| 68 |
67
|
imbi1i |
|- ( ( ( ( ph /\ x e. X ) /\ i = E ) -> A = F ) <-> ( ( i = E /\ ( ph /\ x e. X ) ) -> A = F ) ) |
| 69 |
|
eqcom |
|- ( A = F <-> F = A ) |
| 70 |
69
|
imbi2i |
|- ( ( ( i = E /\ ( ph /\ x e. X ) ) -> A = F ) <-> ( ( i = E /\ ( ph /\ x e. X ) ) -> F = A ) ) |
| 71 |
68 70
|
bitri |
|- ( ( ( ( ph /\ x e. X ) /\ i = E ) -> A = F ) <-> ( ( i = E /\ ( ph /\ x e. X ) ) -> F = A ) ) |
| 72 |
38 71
|
mpbi |
|- ( ( i = E /\ ( ph /\ x e. X ) ) -> F = A ) |
| 73 |
72
|
3adantr2 |
|- ( ( i = E /\ ( ph /\ E e. I /\ x e. X ) ) -> F = A ) |
| 74 |
73
|
3adant2 |
|- ( ( i = E /\ ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) /\ ( ph /\ E e. I /\ x e. X ) ) -> F = A ) |
| 75 |
|
simp3 |
|- ( ( i = E /\ ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) /\ ( ph /\ E e. I /\ x e. X ) ) -> ( ph /\ E e. I /\ x e. X ) ) |
| 76 |
|
eleq1 |
|- ( i = E -> ( i e. I <-> E e. I ) ) |
| 77 |
76
|
3anbi2d |
|- ( i = E -> ( ( ph /\ i e. I /\ x e. X ) <-> ( ph /\ E e. I /\ x e. X ) ) ) |
| 78 |
77
|
imbi1d |
|- ( i = E -> ( ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) <-> ( ( ph /\ E e. I /\ x e. X ) -> A e. CC ) ) ) |
| 79 |
78
|
biimpa |
|- ( ( i = E /\ ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) ) -> ( ( ph /\ E e. I /\ x e. X ) -> A e. CC ) ) |
| 80 |
79
|
3adant3 |
|- ( ( i = E /\ ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) /\ ( ph /\ E e. I /\ x e. X ) ) -> ( ( ph /\ E e. I /\ x e. X ) -> A e. CC ) ) |
| 81 |
75 80
|
mpd |
|- ( ( i = E /\ ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) /\ ( ph /\ E e. I /\ x e. X ) ) -> A e. CC ) |
| 82 |
74 81
|
eqeltrd |
|- ( ( i = E /\ ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) /\ ( ph /\ E e. I /\ x e. X ) ) -> F e. CC ) |
| 83 |
82
|
3exp |
|- ( i = E -> ( ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) -> ( ( ph /\ E e. I /\ x e. X ) -> F e. CC ) ) ) |
| 84 |
6
|
2a1i |
|- ( i = E -> ( ( ( ph /\ E e. I /\ x e. X ) -> F e. CC ) -> ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) ) ) |
| 85 |
83 84
|
impbid |
|- ( i = E -> ( ( ( ph /\ i e. I /\ x e. X ) -> A e. CC ) <-> ( ( ph /\ E e. I /\ x e. X ) -> F e. CC ) ) ) |
| 86 |
61 66 85 6
|
vtoclgf |
|- ( E e. I -> ( ( ph /\ E e. I /\ x e. X ) -> F e. CC ) ) |
| 87 |
57 60 86
|
sylc |
|- ( ( ph /\ x e. X ) -> F e. CC ) |
| 88 |
58 7
|
syl |
|- ( ( ph /\ x e. X ) -> D e. Fin ) |
| 89 |
58
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ i e. D ) -> ph ) |
| 90 |
10
|
adantr |
|- ( ( ph /\ i e. D ) -> ( D u. { E } ) C_ I ) |
| 91 |
|
elun1 |
|- ( i e. D -> i e. ( D u. { E } ) ) |
| 92 |
91
|
adantl |
|- ( ( ph /\ i e. D ) -> i e. ( D u. { E } ) ) |
| 93 |
90 92
|
sseldd |
|- ( ( ph /\ i e. D ) -> i e. I ) |
| 94 |
93
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ i e. D ) -> i e. I ) |
| 95 |
59
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ i e. D ) -> x e. X ) |
| 96 |
89 94 95 6
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ i e. D ) -> A e. CC ) |
| 97 |
21 88 96
|
fprodclf |
|- ( ( ph /\ x e. X ) -> prod_ i e. D A e. CC ) |
| 98 |
|
nfv |
|- F/ j x e. X |
| 99 |
3 98
|
nfan |
|- F/ j ( ph /\ x e. X ) |
| 100 |
|
diffi |
|- ( D e. Fin -> ( D \ { j } ) e. Fin ) |
| 101 |
7 100
|
syl |
|- ( ph -> ( D \ { j } ) e. Fin ) |
| 102 |
101
|
adantr |
|- ( ( ph /\ x e. X ) -> ( D \ { j } ) e. Fin ) |
| 103 |
|
eldifi |
|- ( i e. ( D \ { j } ) -> i e. D ) |
| 104 |
103
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ i e. ( D \ { j } ) ) -> i e. D ) |
| 105 |
104 96
|
syldan |
|- ( ( ( ph /\ x e. X ) /\ i e. ( D \ { j } ) ) -> A e. CC ) |
| 106 |
21 102 105
|
fprodclf |
|- ( ( ph /\ x e. X ) -> prod_ i e. ( D \ { j } ) A e. CC ) |
| 107 |
106
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> prod_ i e. ( D \ { j } ) A e. CC ) |
| 108 |
12 107
|
mulcld |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( C x. prod_ i e. ( D \ { j } ) A ) e. CC ) |
| 109 |
99 88 108
|
fsumclf |
|- ( ( ph /\ x e. X ) -> sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) e. CC ) |
| 110 |
1 11 87 14 15 97 109 13
|
dvmptmulf |
|- ( ph -> ( S _D ( x e. X |-> ( F x. prod_ i e. D A ) ) ) = ( x e. X |-> ( ( G x. prod_ i e. D A ) + ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) ) ) |
| 111 |
|
nfcv |
|- F/_ j x. |
| 112 |
|
nfcv |
|- F/_ j prod_ i e. ( ( D u. { E } ) \ { E } ) A |
| 113 |
5 111 112
|
nfov |
|- F/_ j ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) |
| 114 |
58 8
|
syl |
|- ( ( ph /\ x e. X ) -> E e. _V ) |
| 115 |
58 9
|
syl |
|- ( ( ph /\ x e. X ) -> -. E e. D ) |
| 116 |
|
diffi |
|- ( ( D u. { E } ) e. Fin -> ( ( D u. { E } ) \ { j } ) e. Fin ) |
| 117 |
26 116
|
syl |
|- ( ph -> ( ( D u. { E } ) \ { j } ) e. Fin ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( D u. { E } ) \ { j } ) e. Fin ) |
| 119 |
|
eldifi |
|- ( i e. ( ( D u. { E } ) \ { j } ) -> i e. ( D u. { E } ) ) |
| 120 |
119
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ i e. ( ( D u. { E } ) \ { j } ) ) -> i e. ( D u. { E } ) ) |
| 121 |
120 32
|
syldan |
|- ( ( ( ph /\ x e. X ) /\ i e. ( ( D u. { E } ) \ { j } ) ) -> A e. CC ) |
| 122 |
21 118 121
|
fprodclf |
|- ( ( ph /\ x e. X ) -> prod_ i e. ( ( D u. { E } ) \ { j } ) A e. CC ) |
| 123 |
122
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> prod_ i e. ( ( D u. { E } ) \ { j } ) A e. CC ) |
| 124 |
12 123
|
mulcld |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) e. CC ) |
| 125 |
|
sneq |
|- ( j = E -> { j } = { E } ) |
| 126 |
125
|
difeq2d |
|- ( j = E -> ( ( D u. { E } ) \ { j } ) = ( ( D u. { E } ) \ { E } ) ) |
| 127 |
126
|
prodeq1d |
|- ( j = E -> prod_ i e. ( ( D u. { E } ) \ { j } ) A = prod_ i e. ( ( D u. { E } ) \ { E } ) A ) |
| 128 |
17 127
|
oveq12d |
|- ( j = E -> ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) ) |
| 129 |
49 7
|
eqeltrd |
|- ( ph -> ( ( D u. { E } ) \ { E } ) e. Fin ) |
| 130 |
129
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( D u. { E } ) \ { E } ) e. Fin ) |
| 131 |
58
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ i e. ( ( D u. { E } ) \ { E } ) ) -> ph ) |
| 132 |
10
|
adantr |
|- ( ( ph /\ i e. ( ( D u. { E } ) \ { E } ) ) -> ( D u. { E } ) C_ I ) |
| 133 |
|
eldifi |
|- ( i e. ( ( D u. { E } ) \ { E } ) -> i e. ( D u. { E } ) ) |
| 134 |
133
|
adantl |
|- ( ( ph /\ i e. ( ( D u. { E } ) \ { E } ) ) -> i e. ( D u. { E } ) ) |
| 135 |
132 134
|
sseldd |
|- ( ( ph /\ i e. ( ( D u. { E } ) \ { E } ) ) -> i e. I ) |
| 136 |
135
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ i e. ( ( D u. { E } ) \ { E } ) ) -> i e. I ) |
| 137 |
59
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ i e. ( ( D u. { E } ) \ { E } ) ) -> x e. X ) |
| 138 |
131 136 137 6
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ i e. ( ( D u. { E } ) \ { E } ) ) -> A e. CC ) |
| 139 |
21 130 138
|
fprodclf |
|- ( ( ph /\ x e. X ) -> prod_ i e. ( ( D u. { E } ) \ { E } ) A e. CC ) |
| 140 |
14 139
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) e. CC ) |
| 141 |
99 113 88 114 115 124 128 140
|
fsumsplitsn |
|- ( ( ph /\ x e. X ) -> sum_ j e. ( D u. { E } ) ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) + ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) ) ) |
| 142 |
|
difundir |
|- ( ( D u. { E } ) \ { j } ) = ( ( D \ { j } ) u. ( { E } \ { j } ) ) |
| 143 |
142
|
a1i |
|- ( ( ph /\ j e. D ) -> ( ( D u. { E } ) \ { j } ) = ( ( D \ { j } ) u. ( { E } \ { j } ) ) ) |
| 144 |
|
nfv |
|- F/ x j e. D |
| 145 |
1 144
|
nfan |
|- F/ x ( ph /\ j e. D ) |
| 146 |
|
elsni |
|- ( x e. { E } -> x = E ) |
| 147 |
146
|
eqcomd |
|- ( x e. { E } -> E = x ) |
| 148 |
147
|
adantr |
|- ( ( x e. { E } /\ x = j ) -> E = x ) |
| 149 |
|
simpr |
|- ( ( x e. { E } /\ x = j ) -> x = j ) |
| 150 |
|
eqidd |
|- ( ( x e. { E } /\ x = j ) -> j = j ) |
| 151 |
148 149 150
|
3eqtrd |
|- ( ( x e. { E } /\ x = j ) -> E = j ) |
| 152 |
151
|
adantll |
|- ( ( ( ( ph /\ j e. D ) /\ x e. { E } ) /\ x = j ) -> E = j ) |
| 153 |
|
simpllr |
|- ( ( ( ( ph /\ j e. D ) /\ x e. { E } ) /\ x = j ) -> j e. D ) |
| 154 |
152 153
|
eqeltrd |
|- ( ( ( ( ph /\ j e. D ) /\ x e. { E } ) /\ x = j ) -> E e. D ) |
| 155 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. D ) /\ x e. { E } ) /\ x = j ) -> -. E e. D ) |
| 156 |
154 155
|
pm2.65da |
|- ( ( ( ph /\ j e. D ) /\ x e. { E } ) -> -. x = j ) |
| 157 |
|
velsn |
|- ( x e. { j } <-> x = j ) |
| 158 |
156 157
|
sylnibr |
|- ( ( ( ph /\ j e. D ) /\ x e. { E } ) -> -. x e. { j } ) |
| 159 |
158
|
ex |
|- ( ( ph /\ j e. D ) -> ( x e. { E } -> -. x e. { j } ) ) |
| 160 |
145 159
|
ralrimi |
|- ( ( ph /\ j e. D ) -> A. x e. { E } -. x e. { j } ) |
| 161 |
|
disj |
|- ( ( { E } i^i { j } ) = (/) <-> A. x e. { E } -. x e. { j } ) |
| 162 |
160 161
|
sylibr |
|- ( ( ph /\ j e. D ) -> ( { E } i^i { j } ) = (/) ) |
| 163 |
|
disjdif2 |
|- ( ( { E } i^i { j } ) = (/) -> ( { E } \ { j } ) = { E } ) |
| 164 |
162 163
|
syl |
|- ( ( ph /\ j e. D ) -> ( { E } \ { j } ) = { E } ) |
| 165 |
164
|
uneq2d |
|- ( ( ph /\ j e. D ) -> ( ( D \ { j } ) u. ( { E } \ { j } ) ) = ( ( D \ { j } ) u. { E } ) ) |
| 166 |
143 165
|
eqtrd |
|- ( ( ph /\ j e. D ) -> ( ( D u. { E } ) \ { j } ) = ( ( D \ { j } ) u. { E } ) ) |
| 167 |
166
|
prodeq1d |
|- ( ( ph /\ j e. D ) -> prod_ i e. ( ( D u. { E } ) \ { j } ) A = prod_ i e. ( ( D \ { j } ) u. { E } ) A ) |
| 168 |
167
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> prod_ i e. ( ( D u. { E } ) \ { j } ) A = prod_ i e. ( ( D \ { j } ) u. { E } ) A ) |
| 169 |
|
nfv |
|- F/ i j e. D |
| 170 |
21 169
|
nfan |
|- F/ i ( ( ph /\ x e. X ) /\ j e. D ) |
| 171 |
102
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( D \ { j } ) e. Fin ) |
| 172 |
58
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ph ) |
| 173 |
172 8
|
syl |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> E e. _V ) |
| 174 |
|
id |
|- ( -. E e. D -> -. E e. D ) |
| 175 |
174
|
intnanrd |
|- ( -. E e. D -> -. ( E e. D /\ -. E e. { j } ) ) |
| 176 |
174 175
|
syl |
|- ( -. E e. D -> -. ( E e. D /\ -. E e. { j } ) ) |
| 177 |
|
eldif |
|- ( E e. ( D \ { j } ) <-> ( E e. D /\ -. E e. { j } ) ) |
| 178 |
176 177
|
sylnibr |
|- ( -. E e. D -> -. E e. ( D \ { j } ) ) |
| 179 |
9 178
|
syl |
|- ( ph -> -. E e. ( D \ { j } ) ) |
| 180 |
172 179
|
syl |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> -. E e. ( D \ { j } ) ) |
| 181 |
105
|
adantlr |
|- ( ( ( ( ph /\ x e. X ) /\ j e. D ) /\ i e. ( D \ { j } ) ) -> A e. CC ) |
| 182 |
87
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> F e. CC ) |
| 183 |
170 4 171 173 180 181 16 182
|
fprodsplitsn |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> prod_ i e. ( ( D \ { j } ) u. { E } ) A = ( prod_ i e. ( D \ { j } ) A x. F ) ) |
| 184 |
|
eqidd |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( prod_ i e. ( D \ { j } ) A x. F ) = ( prod_ i e. ( D \ { j } ) A x. F ) ) |
| 185 |
168 183 184
|
3eqtrd |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> prod_ i e. ( ( D u. { E } ) \ { j } ) A = ( prod_ i e. ( D \ { j } ) A x. F ) ) |
| 186 |
185
|
oveq2d |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( C x. ( prod_ i e. ( D \ { j } ) A x. F ) ) ) |
| 187 |
12 107 182
|
mulassd |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) = ( C x. ( prod_ i e. ( D \ { j } ) A x. F ) ) ) |
| 188 |
187
|
eqcomd |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( C x. ( prod_ i e. ( D \ { j } ) A x. F ) ) = ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 189 |
186 188
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ j e. D ) -> ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 190 |
189
|
ex |
|- ( ( ph /\ x e. X ) -> ( j e. D -> ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) ) |
| 191 |
99 190
|
ralrimi |
|- ( ( ph /\ x e. X ) -> A. j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 192 |
191
|
sumeq2d |
|- ( ( ph /\ x e. X ) -> sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = sum_ j e. D ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 193 |
99 88 87 108
|
fsummulc1f |
|- ( ( ph /\ x e. X ) -> ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) = sum_ j e. D ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 194 |
193
|
eqcomd |
|- ( ( ph /\ x e. X ) -> sum_ j e. D ( ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) = ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 195 |
|
eqidd |
|- ( ( ph /\ x e. X ) -> ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) = ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 196 |
192 194 195
|
3eqtrd |
|- ( ( ph /\ x e. X ) -> sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) = ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) |
| 197 |
109 87
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) e. CC ) |
| 198 |
196 197
|
eqeltrd |
|- ( ( ph /\ x e. X ) -> sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) e. CC ) |
| 199 |
198 140
|
addcomd |
|- ( ( ph /\ x e. X ) -> ( sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) + ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) ) = ( ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) + sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) ) ) |
| 200 |
50
|
oveq2d |
|- ( ph -> ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) = ( G x. prod_ i e. D A ) ) |
| 201 |
200
|
adantr |
|- ( ( ph /\ x e. X ) -> ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) = ( G x. prod_ i e. D A ) ) |
| 202 |
201 196
|
oveq12d |
|- ( ( ph /\ x e. X ) -> ( ( G x. prod_ i e. ( ( D u. { E } ) \ { E } ) A ) + sum_ j e. D ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) ) = ( ( G x. prod_ i e. D A ) + ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) ) |
| 203 |
141 199 202
|
3eqtrrd |
|- ( ( ph /\ x e. X ) -> ( ( G x. prod_ i e. D A ) + ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) = sum_ j e. ( D u. { E } ) ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) ) |
| 204 |
1 203
|
mpteq2da |
|- ( ph -> ( x e. X |-> ( ( G x. prod_ i e. D A ) + ( sum_ j e. D ( C x. prod_ i e. ( D \ { j } ) A ) x. F ) ) ) = ( x e. X |-> sum_ j e. ( D u. { E } ) ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) ) ) |
| 205 |
55 110 204
|
3eqtrd |
|- ( ph -> ( S _D ( x e. X |-> prod_ i e. ( D u. { E } ) A ) ) = ( x e. X |-> sum_ j e. ( D u. { E } ) ( C x. prod_ i e. ( ( D u. { E } ) \ { j } ) A ) ) ) |