Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
1
|
ssex |
⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
3 |
|
indexfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ∃ 𝑤 ∈ Fin ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) |
4 |
3
|
3expia |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ V ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑤 ∈ Fin ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) ) |
5 |
2 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑤 ∈ Fin ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑤 ∈ Fin ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) ) |
7 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) |
8 |
|
rexn0 |
⊢ ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → 𝑤 ≠ ∅ ) |
9 |
8
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → 𝑤 ≠ ∅ ) |
10 |
7 9
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → 𝑤 ≠ ∅ ) |
11 |
10
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → 𝑤 ≠ ∅ ) ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → 𝑤 ≠ ∅ ) ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) ∧ 𝑤 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → 𝑤 ≠ ∅ ) ) |
14 |
|
sstr |
⊢ ( ( 𝑤 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝑤 ⊆ ℝ ) |
15 |
14
|
ancoms |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) → 𝑤 ⊆ ℝ ) |
16 |
|
fimaxre |
⊢ ( ( 𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin ∧ 𝑤 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) |
17 |
16
|
3expia |
⊢ ( ( 𝑤 ⊆ ℝ ∧ 𝑤 ∈ Fin ) → ( 𝑤 ≠ ∅ → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
18 |
15 17
|
sylan |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ 𝑤 ∈ Fin ) → ( 𝑤 ≠ ∅ → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
19 |
18
|
anasss |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( 𝑤 ⊆ 𝐵 ∧ 𝑤 ∈ Fin ) ) → ( 𝑤 ≠ ∅ → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
20 |
19
|
ancom2s |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( 𝑤 ∈ Fin ∧ 𝑤 ⊆ 𝐵 ) ) → ( 𝑤 ≠ ∅ → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
21 |
20
|
3ad2antl3 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑤 ∈ Fin ∧ 𝑤 ⊆ 𝐵 ) ) → ( 𝑤 ≠ ∅ → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
22 |
21
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) ∧ 𝑤 ⊆ 𝐵 ) → ( 𝑤 ≠ ∅ → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
23 |
13 22
|
syld |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) ∧ 𝑤 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
24 |
23
|
a1dd |
⊢ ( ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) ∧ 𝑤 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ( ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ) |
25 |
24
|
ex |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) → ( 𝑤 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ( ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ) ) |
26 |
25
|
3impd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) → ( ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
29 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) |
30 |
28 29
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) |
31 |
27 30
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
34 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑤 |
35 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) |
36 |
34 35
|
nfrex |
⊢ Ⅎ 𝑧 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) |
37 |
33 36
|
nfralw |
⊢ Ⅎ 𝑧 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) |
38 |
32 37
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) |
40 |
38 39
|
nfan |
⊢ Ⅎ 𝑧 ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) |
41 |
|
breq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ≤ 𝑧 ↔ 𝑣 ≤ 𝑧 ) ) |
42 |
41
|
imbi1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑦 ≤ 𝑧 → 𝜑 ) ↔ ( 𝑣 ≤ 𝑧 → 𝜑 ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑣 ≤ 𝑧 → 𝜑 ) ) ) |
44 |
43
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ↔ ∃ 𝑣 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑣 ≤ 𝑧 → 𝜑 ) ) |
45 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝐵 ( 𝑣 ≤ 𝑧 → 𝜑 ) → ( 𝑧 ∈ 𝐵 → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) ) |
46 |
|
ssel2 |
⊢ ( ( 𝑤 ⊆ 𝐵 ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ∈ 𝐵 ) |
47 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ ℝ ) |
48 |
46 47
|
sylan2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( 𝑤 ⊆ 𝐵 ∧ 𝑣 ∈ 𝑤 ) ) → 𝑣 ∈ ℝ ) |
49 |
48
|
anassrs |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ∈ ℝ ) |
50 |
49
|
adantlr |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ∈ ℝ ) |
51 |
50
|
adantlr |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ∈ ℝ ) |
52 |
|
ssel2 |
⊢ ( ( 𝑤 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ∈ 𝐵 ) |
53 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) |
54 |
52 53
|
sylan2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( 𝑤 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑤 ) ) → 𝑦 ∈ ℝ ) |
55 |
54
|
anassrs |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ∈ ℝ ) |
56 |
55
|
adantrr |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑦 ∈ ℝ ) |
58 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℝ ) |
59 |
58
|
adantlr |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℝ ) |
60 |
59
|
ad2ant2r |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) → 𝑧 ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑧 ∈ ℝ ) |
62 |
|
breq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 ≤ 𝑦 ↔ 𝑣 ≤ 𝑦 ) ) |
63 |
62
|
rspccva |
⊢ ( ( ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ≤ 𝑦 ) |
64 |
63
|
adantll |
⊢ ( ( ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ≤ 𝑦 ) |
65 |
64
|
adantll |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ≤ 𝑦 ) |
66 |
65
|
adantlr |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ≤ 𝑦 ) |
67 |
|
simplrr |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑦 ≤ 𝑧 ) |
68 |
51 57 61 66 67
|
letrd |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → 𝑣 ≤ 𝑧 ) |
69 |
|
pm2.27 |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑧 ∈ 𝐵 → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) → ( ( 𝑧 ∈ 𝐵 → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) ) |
71 |
70
|
ad2antlr |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → ( ( 𝑧 ∈ 𝐵 → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) ) |
72 |
68 71
|
mpid |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → ( ( 𝑧 ∈ 𝐵 → ( 𝑣 ≤ 𝑧 → 𝜑 ) ) → 𝜑 ) ) |
73 |
45 72
|
syl5 |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑣 ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑣 ≤ 𝑧 → 𝜑 ) → 𝜑 ) ) |
74 |
73
|
adantlr |
⊢ ( ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑣 ≤ 𝑧 → 𝜑 ) → 𝜑 ) ) |
75 |
74
|
rexlimdva |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑣 ≤ 𝑧 → 𝜑 ) → 𝜑 ) ) |
76 |
44 75
|
syl5bi |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → 𝜑 ) ) |
77 |
76
|
ralimdva |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
78 |
77
|
imp |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
79 |
78
|
an32s |
⊢ ( ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
80 |
79
|
exp32 |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ( 𝑧 ∈ 𝐵 → ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
81 |
80
|
an32s |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) → ( 𝑧 ∈ 𝐵 → ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
82 |
40 81
|
ralrimi |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ∧ ( 𝑦 ∈ 𝑤 ∧ ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
83 |
82
|
exp32 |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ( 𝑦 ∈ 𝑤 → ( ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) ) |
84 |
31 83
|
reximdai |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
85 |
84
|
adantrr |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
86 |
|
ssrexv |
⊢ ( 𝑤 ⊆ 𝐵 → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
87 |
86
|
ad2antlr |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
88 |
85 87
|
syld |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝑤 ⊆ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
89 |
88
|
exp43 |
⊢ ( 𝐵 ⊆ ℝ → ( 𝑤 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ( ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) ) ) ) |
90 |
89
|
3impd |
⊢ ( 𝐵 ⊆ ℝ → ( ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) ) |
91 |
90
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) → ( ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) ) |
92 |
91
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) → ( ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ( ∃ 𝑦 ∈ 𝑤 ∀ 𝑢 ∈ 𝑤 𝑢 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) ) |
93 |
26 92
|
mpdd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑤 ∈ Fin ) → ( ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
94 |
93
|
rexlimdva |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) → ( ∃ 𝑤 ∈ Fin ( 𝑤 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑤 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ∧ ∀ 𝑦 ∈ 𝑤 ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
95 |
6 94
|
syld |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → 𝜑 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑦 ≤ 𝑧 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |