| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0seqcvgd.1 |
⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℕ0 ) |
| 2 |
|
nn0seqcvgd.2 |
⊢ ( 𝜑 → 𝑁 = ( 𝐹 ‘ 0 ) ) |
| 3 |
|
nn0seqcvgd.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ) ) |
| 4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 5 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
| 7 |
2 6
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 8 |
7
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 9 |
8
|
leidd |
⊢ ( 𝜑 → 𝑁 ≤ 𝑁 ) |
| 10 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 0 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 0 ) ) |
| 12 |
10 11
|
breq12d |
⊢ ( 𝑚 = 0 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑚 = 0 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑘 ) ) |
| 16 |
14 15
|
breq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑁 − 𝑚 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 20 |
18 19
|
breq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑁 ) ) |
| 24 |
22 23
|
breq12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) ) |
| 26 |
2 9
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ 𝑁 ) |
| 27 |
8
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 28 |
27
|
subid1d |
⊢ ( 𝜑 → ( 𝑁 − 0 ) = 𝑁 ) |
| 29 |
26 28
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) |
| 30 |
29
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) |
| 31 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 32 |
|
posdif |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 33 |
31 8 32
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 35 |
|
breq1 |
⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 37 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 38 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
| 39 |
1 37 38
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
| 40 |
39
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 41 |
7
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 42 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
| 43 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
| 44 |
41 42 43
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
| 45 |
|
zltlem1 |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝑁 − 𝑘 ) ∈ ℤ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) |
| 46 |
40 44 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) |
| 47 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 49 |
|
subsub4 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 50 |
48 49
|
mp3an3 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 51 |
27 47 50
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 52 |
51
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 53 |
46 52
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 55 |
34 36 54
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝑘 < 𝑁 ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 56 |
55
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) ∧ 𝑘 < 𝑁 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 57 |
56
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 58 |
57
|
a1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 59 |
39
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 60 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ0 ) |
| 61 |
60
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 62 |
44
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 − 𝑘 ) ∈ ℝ ) |
| 63 |
|
ltletr |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝑁 − 𝑘 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ) ) |
| 64 |
59 61 62 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ) ) |
| 65 |
64 53
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 66 |
3 65
|
syland |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 68 |
67
|
expdimp |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 69 |
58 68
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 70 |
69
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 71 |
70
|
expcom |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 72 |
71
|
a2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 73 |
72
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 74 |
13 17 21 25 30 73
|
fnn0ind |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
| 75 |
7 7 9 74
|
syl3anc |
⊢ ( 𝜑 → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
| 76 |
75
|
pm2.43i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) |
| 77 |
27
|
subidd |
⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
| 78 |
76 77
|
breqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 0 ) |
| 79 |
1 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℕ0 ) |
| 80 |
79
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝑁 ) ) |
| 81 |
79
|
nn0red |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 82 |
|
0re |
⊢ 0 ∈ ℝ |
| 83 |
|
letri3 |
⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑁 ) = 0 ↔ ( ( 𝐹 ‘ 𝑁 ) ≤ 0 ∧ 0 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 84 |
81 82 83
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) = 0 ↔ ( ( 𝐹 ‘ 𝑁 ) ≤ 0 ∧ 0 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 85 |
78 80 84
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = 0 ) |