Metamath Proof Explorer


Theorem nn0seqcvgd

Description: A strictly-decreasing nonnegative integer sequence with initial term N reaches zero by the N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses nn0seqcvgd.1 φF:00
nn0seqcvgd.2 φN=F0
nn0seqcvgd.3 φk0Fk+10Fk+1<Fk
Assertion nn0seqcvgd φFN=0

Proof

Step Hyp Ref Expression
1 nn0seqcvgd.1 φF:00
2 nn0seqcvgd.2 φN=F0
3 nn0seqcvgd.3 φk0Fk+10Fk+1<Fk
4 0nn0 00
5 ffvelcdm F:0000F00
6 1 4 5 sylancl φF00
7 2 6 eqeltrd φN0
8 7 nn0red φN
9 8 leidd φNN
10 fveq2 m=0Fm=F0
11 oveq2 m=0Nm=N0
12 10 11 breq12d m=0FmNmF0N0
13 12 imbi2d m=0φFmNmφF0N0
14 fveq2 m=kFm=Fk
15 oveq2 m=kNm=Nk
16 14 15 breq12d m=kFmNmFkNk
17 16 imbi2d m=kφFmNmφFkNk
18 fveq2 m=k+1Fm=Fk+1
19 oveq2 m=k+1Nm=Nk+1
20 18 19 breq12d m=k+1FmNmFk+1Nk+1
21 20 imbi2d m=k+1φFmNmφFk+1Nk+1
22 fveq2 m=NFm=FN
23 oveq2 m=NNm=NN
24 22 23 breq12d m=NFmNmFNNN
25 24 imbi2d m=NφFmNmφFNNN
26 2 9 eqbrtrrd φF0N
27 8 recnd φN
28 27 subid1d φN0=N
29 26 28 breqtrrd φF0N0
30 29 a1i N0φF0N0
31 nn0re k0k
32 posdif kNk<N0<Nk
33 31 8 32 syl2anr φk0k<N0<Nk
34 33 adantr φk0Fk+1=0k<N0<Nk
35 breq1 Fk+1=0Fk+1<Nk0<Nk
36 35 adantl φk0Fk+1=0Fk+1<Nk0<Nk
37 peano2nn0 k0k+10
38 ffvelcdm F:00k+10Fk+10
39 1 37 38 syl2an φk0Fk+10
40 39 nn0zd φk0Fk+1
41 7 nn0zd φN
42 nn0z k0k
43 zsubcl NkNk
44 41 42 43 syl2an φk0Nk
45 zltlem1 Fk+1NkFk+1<NkFk+1N-k-1
46 40 44 45 syl2anc φk0Fk+1<NkFk+1N-k-1
47 nn0cn k0k
48 ax-1cn 1
49 subsub4 Nk1N-k-1=Nk+1
50 48 49 mp3an3 NkN-k-1=Nk+1
51 27 47 50 syl2an φk0N-k-1=Nk+1
52 51 breq2d φk0Fk+1N-k-1Fk+1Nk+1
53 46 52 bitrd φk0Fk+1<NkFk+1Nk+1
54 53 adantr φk0Fk+1=0Fk+1<NkFk+1Nk+1
55 34 36 54 3bitr2d φk0Fk+1=0k<NFk+1Nk+1
56 55 biimpa φk0Fk+1=0k<NFk+1Nk+1
57 56 an32s φk0k<NFk+1=0Fk+1Nk+1
58 57 a1d φk0k<NFk+1=0FkNkFk+1Nk+1
59 39 nn0red φk0Fk+1
60 1 ffvelcdmda φk0Fk0
61 60 nn0red φk0Fk
62 44 zred φk0Nk
63 ltletr Fk+1FkNkFk+1<FkFkNkFk+1<Nk
64 59 61 62 63 syl3anc φk0Fk+1<FkFkNkFk+1<Nk
65 64 53 sylibd φk0Fk+1<FkFkNkFk+1Nk+1
66 3 65 syland φk0Fk+10FkNkFk+1Nk+1
67 66 adantr φk0k<NFk+10FkNkFk+1Nk+1
68 67 expdimp φk0k<NFk+10FkNkFk+1Nk+1
69 58 68 pm2.61dane φk0k<NFkNkFk+1Nk+1
70 69 anasss φk0k<NFkNkFk+1Nk+1
71 70 expcom k0k<NφFkNkFk+1Nk+1
72 71 a2d k0k<NφFkNkφFk+1Nk+1
73 72 3adant1 N0k0k<NφFkNkφFk+1Nk+1
74 13 17 21 25 30 73 fnn0ind N0N0NNφFNNN
75 7 7 9 74 syl3anc φφFNNN
76 75 pm2.43i φFNNN
77 27 subidd φNN=0
78 76 77 breqtrd φFN0
79 1 7 ffvelcdmd φFN0
80 79 nn0ge0d φ0FN
81 79 nn0red φFN
82 0re 0
83 letri3 FN0FN=0FN00FN
84 81 82 83 sylancl φFN=0FN00FN
85 78 80 84 mpbir2and φFN=0