| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ¬ 𝐷 ∈ Fin ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝐷 ⊆ ℂ ) |
| 3 |
2
|
sseld |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑏 ∈ 𝐷 → 𝑏 ∈ ℂ ) ) |
| 4 |
|
simprll |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑝 ∈ ( Poly ‘ ℂ ) ) |
| 5 |
|
plyf |
⊢ ( 𝑝 ∈ ( Poly ‘ ℂ ) → 𝑝 : ℂ ⟶ ℂ ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑝 : ℂ ⟶ ℂ ) |
| 7 |
6
|
ffnd |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑝 Fn ℂ ) |
| 8 |
7
|
adantr |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑝 Fn ℂ ) |
| 9 |
|
simprrl |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑎 ∈ ( Poly ‘ ℂ ) ) |
| 10 |
|
plyf |
⊢ ( 𝑎 ∈ ( Poly ‘ ℂ ) → 𝑎 : ℂ ⟶ ℂ ) |
| 11 |
9 10
|
syl |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑎 : ℂ ⟶ ℂ ) |
| 12 |
11
|
ffnd |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑎 Fn ℂ ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑎 Fn ℂ ) |
| 14 |
|
cnex |
⊢ ℂ ∈ V |
| 15 |
14
|
a1i |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ℂ ∈ V ) |
| 16 |
2
|
sselda |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ ℂ ) |
| 17 |
|
fnfvof |
⊢ ( ( ( 𝑝 Fn ℂ ∧ 𝑎 Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑏 ∈ ℂ ) ) → ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = ( ( 𝑝 ‘ 𝑏 ) − ( 𝑎 ‘ 𝑏 ) ) ) |
| 18 |
8 13 15 16 17
|
syl22anc |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = ( ( 𝑝 ‘ 𝑏 ) − ( 𝑎 ‘ 𝑏 ) ) ) |
| 19 |
6
|
adantr |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑝 : ℂ ⟶ ℂ ) |
| 20 |
19 16
|
ffvelcdmd |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑝 ‘ 𝑏 ) ∈ ℂ ) |
| 21 |
|
simprlr |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑝 ↾ 𝐷 ) = 𝐹 ) |
| 22 |
|
simprrr |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑎 ↾ 𝐷 ) = 𝐹 ) |
| 23 |
21 22
|
eqtr4d |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑝 ↾ 𝐷 ) = ( 𝑎 ↾ 𝐷 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑝 ↾ 𝐷 ) = ( 𝑎 ↾ 𝐷 ) ) |
| 25 |
24
|
fveq1d |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑝 ↾ 𝐷 ) ‘ 𝑏 ) = ( ( 𝑎 ↾ 𝐷 ) ‘ 𝑏 ) ) |
| 26 |
|
fvres |
⊢ ( 𝑏 ∈ 𝐷 → ( ( 𝑝 ↾ 𝐷 ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑏 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑝 ↾ 𝐷 ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑏 ) ) |
| 28 |
|
fvres |
⊢ ( 𝑏 ∈ 𝐷 → ( ( 𝑎 ↾ 𝐷 ) ‘ 𝑏 ) = ( 𝑎 ‘ 𝑏 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑎 ↾ 𝐷 ) ‘ 𝑏 ) = ( 𝑎 ‘ 𝑏 ) ) |
| 30 |
25 27 29
|
3eqtr3d |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑝 ‘ 𝑏 ) = ( 𝑎 ‘ 𝑏 ) ) |
| 31 |
20 30
|
subeq0bd |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑝 ‘ 𝑏 ) − ( 𝑎 ‘ 𝑏 ) ) = 0 ) |
| 32 |
18 31
|
eqtrd |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = 0 ) |
| 33 |
32
|
ex |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑏 ∈ 𝐷 → ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = 0 ) ) |
| 34 |
3 33
|
jcad |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑏 ∈ 𝐷 → ( 𝑏 ∈ ℂ ∧ ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = 0 ) ) ) |
| 35 |
|
plysubcl |
⊢ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ 𝑎 ∈ ( Poly ‘ ℂ ) ) → ( 𝑝 ∘f − 𝑎 ) ∈ ( Poly ‘ ℂ ) ) |
| 36 |
4 9 35
|
syl2anc |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑝 ∘f − 𝑎 ) ∈ ( Poly ‘ ℂ ) ) |
| 37 |
|
plyf |
⊢ ( ( 𝑝 ∘f − 𝑎 ) ∈ ( Poly ‘ ℂ ) → ( 𝑝 ∘f − 𝑎 ) : ℂ ⟶ ℂ ) |
| 38 |
|
ffn |
⊢ ( ( 𝑝 ∘f − 𝑎 ) : ℂ ⟶ ℂ → ( 𝑝 ∘f − 𝑎 ) Fn ℂ ) |
| 39 |
|
fniniseg |
⊢ ( ( 𝑝 ∘f − 𝑎 ) Fn ℂ → ( 𝑏 ∈ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ↔ ( 𝑏 ∈ ℂ ∧ ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = 0 ) ) ) |
| 40 |
36 37 38 39
|
4syl |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑏 ∈ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ↔ ( 𝑏 ∈ ℂ ∧ ( ( 𝑝 ∘f − 𝑎 ) ‘ 𝑏 ) = 0 ) ) ) |
| 41 |
34 40
|
sylibrd |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑏 ∈ 𝐷 → 𝑏 ∈ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ) ) |
| 42 |
41
|
ssrdv |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝐷 ⊆ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ) |
| 43 |
|
ssfi |
⊢ ( ( ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin ∧ 𝐷 ⊆ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ) → 𝐷 ∈ Fin ) |
| 44 |
43
|
expcom |
⊢ ( 𝐷 ⊆ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) → ( ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin → 𝐷 ∈ Fin ) ) |
| 45 |
42 44
|
syl |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin → 𝐷 ∈ Fin ) ) |
| 46 |
1 45
|
mtod |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ¬ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin ) |
| 47 |
|
neqne |
⊢ ( ¬ ( 𝑝 ∘f − 𝑎 ) = 0𝑝 → ( 𝑝 ∘f − 𝑎 ) ≠ 0𝑝 ) |
| 48 |
|
eqid |
⊢ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) = ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) |
| 49 |
48
|
fta1 |
⊢ ( ( ( 𝑝 ∘f − 𝑎 ) ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ∘f − 𝑎 ) ≠ 0𝑝 ) → ( ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝑝 ∘f − 𝑎 ) ) ) ) |
| 50 |
36 47 49
|
syl2an |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ ¬ ( 𝑝 ∘f − 𝑎 ) = 0𝑝 ) → ( ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ) ≤ ( deg ‘ ( 𝑝 ∘f − 𝑎 ) ) ) ) |
| 51 |
50
|
simpld |
⊢ ( ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) ∧ ¬ ( 𝑝 ∘f − 𝑎 ) = 0𝑝 ) → ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin ) |
| 52 |
51
|
ex |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( ¬ ( 𝑝 ∘f − 𝑎 ) = 0𝑝 → ( ◡ ( 𝑝 ∘f − 𝑎 ) “ { 0 } ) ∈ Fin ) ) |
| 53 |
46 52
|
mt3d |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑝 ∘f − 𝑎 ) = 0𝑝 ) |
| 54 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( 𝑝 ∘f − 𝑎 ) = ( ℂ × { 0 } ) ) |
| 56 |
|
ofsubeq0 |
⊢ ( ( ℂ ∈ V ∧ 𝑝 : ℂ ⟶ ℂ ∧ 𝑎 : ℂ ⟶ ℂ ) → ( ( 𝑝 ∘f − 𝑎 ) = ( ℂ × { 0 } ) ↔ 𝑝 = 𝑎 ) ) |
| 57 |
14 6 11 56
|
mp3an2i |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → ( ( 𝑝 ∘f − 𝑎 ) = ( ℂ × { 0 } ) ↔ 𝑝 = 𝑎 ) ) |
| 58 |
55 57
|
mpbid |
⊢ ( ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) ∧ ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) → 𝑝 = 𝑎 ) |
| 59 |
58
|
ex |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) → ( ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) → 𝑝 = 𝑎 ) ) |
| 60 |
59
|
alrimivv |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) → ∀ 𝑝 ∀ 𝑎 ( ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) → 𝑝 = 𝑎 ) ) |
| 61 |
|
eleq1w |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 ∈ ( Poly ‘ ℂ ) ↔ 𝑎 ∈ ( Poly ‘ ℂ ) ) ) |
| 62 |
|
reseq1 |
⊢ ( 𝑝 = 𝑎 → ( 𝑝 ↾ 𝐷 ) = ( 𝑎 ↾ 𝐷 ) ) |
| 63 |
62
|
eqeq1d |
⊢ ( 𝑝 = 𝑎 → ( ( 𝑝 ↾ 𝐷 ) = 𝐹 ↔ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) |
| 64 |
61 63
|
anbi12d |
⊢ ( 𝑝 = 𝑎 → ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ↔ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) ) |
| 65 |
64
|
mo4 |
⊢ ( ∃* 𝑝 ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ↔ ∀ 𝑝 ∀ 𝑎 ( ( ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ∧ ( 𝑎 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑎 ↾ 𝐷 ) = 𝐹 ) ) → 𝑝 = 𝑎 ) ) |
| 66 |
60 65
|
sylibr |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) → ∃* 𝑝 ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ) |
| 67 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
| 68 |
67
|
sseli |
⊢ ( 𝑝 ∈ ( Poly ‘ 𝑆 ) → 𝑝 ∈ ( Poly ‘ ℂ ) ) |
| 69 |
68
|
anim1i |
⊢ ( ( 𝑝 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) → ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ) |
| 70 |
69
|
moimi |
⊢ ( ∃* 𝑝 ( 𝑝 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) → ∃* 𝑝 ( 𝑝 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ) |
| 71 |
66 70
|
syl |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin ) → ∃* 𝑝 ( 𝑝 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑝 ↾ 𝐷 ) = 𝐹 ) ) |