Step |
Hyp |
Ref |
Expression |
1 |
|
rmodislmod.v |
⊢ 𝑉 = ( Base ‘ 𝑅 ) |
2 |
|
rmodislmod.a |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
rmodislmod.s |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
4 |
|
rmodislmod.f |
⊢ 𝐹 = ( Scalar ‘ 𝑅 ) |
5 |
|
rmodislmod.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
rmodislmod.p |
⊢ ⨣ = ( +g ‘ 𝐹 ) |
7 |
|
rmodislmod.t |
⊢ × = ( .r ‘ 𝐹 ) |
8 |
|
rmodislmod.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
9 |
|
rmodislmod.r |
⊢ ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) |
10 |
|
rmodislmod.m |
⊢ ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) |
11 |
|
rmodislmod.l |
⊢ 𝐿 = ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) |
12 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
13 |
|
vscandxnbasendx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) |
14 |
13
|
necomi |
⊢ ( Base ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
15 |
12 14
|
setsnid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
16 |
1 15
|
eqtri |
⊢ 𝑉 = ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
17 |
11
|
eqcomi |
⊢ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) = 𝐿 |
18 |
17
|
fveq2i |
⊢ ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) = ( Base ‘ 𝐿 ) |
19 |
16 18
|
eqtri |
⊢ 𝑉 = ( Base ‘ 𝐿 ) |
20 |
19
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝑉 = ( Base ‘ 𝐿 ) ) |
21 |
|
plusgid |
⊢ +g = Slot ( +g ‘ ndx ) |
22 |
|
vscandxnplusgndx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( +g ‘ ndx ) |
23 |
22
|
necomi |
⊢ ( +g ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
24 |
21 23
|
setsnid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
25 |
11
|
fveq2i |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
26 |
24 2 25
|
3eqtr4i |
⊢ + = ( +g ‘ 𝐿 ) |
27 |
26
|
a1i |
⊢ ( 𝐹 ∈ CRing → + = ( +g ‘ 𝐿 ) ) |
28 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
29 |
|
vscandxnscandx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
30 |
29
|
necomi |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
31 |
28 30
|
setsnid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
32 |
11
|
fveq2i |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
33 |
31 4 32
|
3eqtr4i |
⊢ 𝐹 = ( Scalar ‘ 𝐿 ) |
34 |
33
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝐹 = ( Scalar ‘ 𝐿 ) ) |
35 |
9
|
simp1i |
⊢ 𝑅 ∈ Grp |
36 |
5
|
fvexi |
⊢ 𝐾 ∈ V |
37 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
38 |
10
|
mpoexg |
⊢ ( ( 𝐾 ∈ V ∧ 𝑉 ∈ V ) → ∗ ∈ V ) |
39 |
36 37 38
|
mp2an |
⊢ ∗ ∈ V |
40 |
|
vscaid |
⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) |
41 |
40
|
setsid |
⊢ ( ( 𝑅 ∈ Grp ∧ ∗ ∈ V ) → ∗ = ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) ) |
42 |
35 39 41
|
mp2an |
⊢ ∗ = ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
43 |
17
|
fveq2i |
⊢ ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) = ( ·𝑠 ‘ 𝐿 ) |
44 |
42 43
|
eqtri |
⊢ ∗ = ( ·𝑠 ‘ 𝐿 ) |
45 |
44
|
a1i |
⊢ ( 𝐹 ∈ CRing → ∗ = ( ·𝑠 ‘ 𝐿 ) ) |
46 |
5
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝐾 = ( Base ‘ 𝐹 ) ) |
47 |
6
|
a1i |
⊢ ( 𝐹 ∈ CRing → ⨣ = ( +g ‘ 𝐹 ) ) |
48 |
7
|
a1i |
⊢ ( 𝐹 ∈ CRing → × = ( .r ‘ 𝐹 ) ) |
49 |
8
|
a1i |
⊢ ( 𝐹 ∈ CRing → 1 = ( 1r ‘ 𝐹 ) ) |
50 |
|
crngring |
⊢ ( 𝐹 ∈ CRing → 𝐹 ∈ Ring ) |
51 |
1
|
eqcomi |
⊢ ( Base ‘ 𝑅 ) = 𝑉 |
52 |
51 19
|
eqtri |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐿 ) |
53 |
24 25
|
eqtr4i |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝐿 ) |
54 |
52 53
|
grpprop |
⊢ ( 𝑅 ∈ Grp ↔ 𝐿 ∈ Grp ) |
55 |
35 54
|
mpbi |
⊢ 𝐿 ∈ Grp |
56 |
55
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ Grp ) |
57 |
10
|
a1i |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
58 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑏 ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
59 |
58
|
ancoms |
⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
61 |
|
simp2 |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) |
62 |
|
simp3 |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
63 |
|
ovexd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ V ) |
64 |
57 60 61 62 63
|
ovmpod |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
65 |
|
simpl1 |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
66 |
65
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
67 |
66
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
68 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
69 |
5
|
grpbn0 |
⊢ ( 𝐹 ∈ Grp → 𝐾 ≠ ∅ ) |
70 |
68 69
|
syl |
⊢ ( 𝐹 ∈ Ring → 𝐾 ≠ ∅ ) |
71 |
70
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → 𝐾 ≠ ∅ ) |
72 |
9 71
|
ax-mp |
⊢ 𝐾 ≠ ∅ |
73 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) ) |
74 |
72 73
|
ax-mp |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
75 |
|
ralcom |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
76 |
1
|
grpbn0 |
⊢ ( 𝑅 ∈ Grp → 𝑉 ≠ ∅ ) |
77 |
76
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → 𝑉 ≠ ∅ ) |
78 |
9 77
|
ax-mp |
⊢ 𝑉 ≠ ∅ |
79 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) ) |
80 |
78 79
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
81 |
|
oveq2 |
⊢ ( 𝑟 = 𝑎 → ( 𝑤 · 𝑟 ) = ( 𝑤 · 𝑎 ) ) |
82 |
81
|
eleq1d |
⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ↔ ( 𝑤 · 𝑎 ) ∈ 𝑉 ) ) |
83 |
|
oveq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 · 𝑎 ) = ( 𝑏 · 𝑎 ) ) |
84 |
83
|
eleq1d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 · 𝑎 ) ∈ 𝑉 ↔ ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
85 |
82 84
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
86 |
85
|
3adant1 |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
87 |
80 86
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
88 |
75 87
|
sylbi |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
89 |
67 74 88
|
3syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
90 |
89
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
91 |
9 90
|
ax-mp |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) |
92 |
64 91
|
eqeltrd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) ∈ 𝑉 ) |
93 |
10
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
94 |
|
oveq12 |
⊢ ( ( 𝑣 = ( 𝑏 + 𝑐 ) ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
95 |
94
|
ancoms |
⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = ( 𝑏 + 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
96 |
95
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = ( 𝑏 + 𝑐 ) ) ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
97 |
|
simp1 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) |
98 |
1 2
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
99 |
35 98
|
mp3an1 |
⊢ ( ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
100 |
99
|
3adant1 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
101 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) ∈ V ) |
102 |
93 96 97 100 101
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
103 |
|
simpl2 |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
104 |
103
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
105 |
104
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
106 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) ) |
107 |
72 106
|
ax-mp |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
108 |
|
oveq2 |
⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 + 𝑥 ) · 𝑎 ) ) |
109 |
|
oveq2 |
⊢ ( 𝑟 = 𝑎 → ( 𝑥 · 𝑟 ) = ( 𝑥 · 𝑎 ) ) |
110 |
81 109
|
oveq12d |
⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ) |
111 |
108 110
|
eqeq12d |
⊢ ( 𝑟 = 𝑎 → ( ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ↔ ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ) ) |
112 |
|
oveq2 |
⊢ ( 𝑥 = 𝑐 → ( 𝑤 + 𝑥 ) = ( 𝑤 + 𝑐 ) ) |
113 |
112
|
oveq1d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 + 𝑐 ) · 𝑎 ) ) |
114 |
|
oveq1 |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 · 𝑎 ) = ( 𝑐 · 𝑎 ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
116 |
113 115
|
eqeq12d |
⊢ ( 𝑥 = 𝑐 → ( ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ↔ ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
117 |
|
oveq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 + 𝑐 ) = ( 𝑏 + 𝑐 ) ) |
118 |
117
|
oveq1d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
119 |
83
|
oveq1d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
120 |
118 119
|
eqeq12d |
⊢ ( 𝑤 = 𝑏 → ( ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ↔ ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
121 |
111 116 120
|
rspc3v |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
122 |
121
|
3com23 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
123 |
107 122
|
syl5com |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
124 |
105 123
|
syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
125 |
124
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
126 |
9 125
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
127 |
102 126
|
eqtrd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
128 |
127
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
129 |
59
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
130 |
|
simp2 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
131 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ V ) |
132 |
93 129 97 130 131
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
133 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
134 |
133
|
ancoms |
⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
135 |
134
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
136 |
|
simp3 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
137 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑎 ) ∈ V ) |
138 |
93 135 97 136 137
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
139 |
132 138
|
oveq12d |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
140 |
139
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
141 |
128 140
|
eqtr4d |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) ) |
142 |
|
simpl3 |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
143 |
142
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
144 |
143
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
145 |
|
ralrot3 |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
146 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ) |
147 |
78 146
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
148 |
|
oveq1 |
⊢ ( 𝑞 = 𝑎 → ( 𝑞 ⨣ 𝑟 ) = ( 𝑎 ⨣ 𝑟 ) ) |
149 |
148
|
oveq2d |
⊢ ( 𝑞 = 𝑎 → ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) ) |
150 |
|
oveq2 |
⊢ ( 𝑞 = 𝑎 → ( 𝑤 · 𝑞 ) = ( 𝑤 · 𝑎 ) ) |
151 |
150
|
oveq1d |
⊢ ( 𝑞 = 𝑎 → ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ) |
152 |
149 151
|
eqeq12d |
⊢ ( 𝑞 = 𝑎 → ( ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ↔ ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ) ) |
153 |
|
oveq2 |
⊢ ( 𝑟 = 𝑏 → ( 𝑎 ⨣ 𝑟 ) = ( 𝑎 ⨣ 𝑏 ) ) |
154 |
153
|
oveq2d |
⊢ ( 𝑟 = 𝑏 → ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) ) |
155 |
|
oveq2 |
⊢ ( 𝑟 = 𝑏 → ( 𝑤 · 𝑟 ) = ( 𝑤 · 𝑏 ) ) |
156 |
155
|
oveq2d |
⊢ ( 𝑟 = 𝑏 → ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ) |
157 |
154 156
|
eqeq12d |
⊢ ( 𝑟 = 𝑏 → ( ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ↔ ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ) ) |
158 |
|
oveq1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
159 |
|
oveq1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 · 𝑎 ) = ( 𝑐 · 𝑎 ) ) |
160 |
|
oveq1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 · 𝑏 ) = ( 𝑐 · 𝑏 ) ) |
161 |
159 160
|
oveq12d |
⊢ ( 𝑤 = 𝑐 → ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
162 |
158 161
|
eqeq12d |
⊢ ( 𝑤 = 𝑐 → ( ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ↔ ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
163 |
152 157 162
|
rspc3v |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
164 |
147 163
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
165 |
145 164
|
sylbi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
166 |
144 165
|
syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
167 |
166
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
168 |
9 167
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
169 |
10
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
170 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = ( 𝑎 ⨣ 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
171 |
170
|
ancoms |
⊢ ( ( 𝑠 = ( 𝑎 ⨣ 𝑏 ) ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
172 |
171
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = ( 𝑎 ⨣ 𝑏 ) ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
173 |
5 6
|
grpcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
174 |
173
|
3expib |
⊢ ( 𝐹 ∈ Grp → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
175 |
68 174
|
syl |
⊢ ( 𝐹 ∈ Ring → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
176 |
175
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
177 |
9 176
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
178 |
177
|
3adant3 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
179 |
|
simp3 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
180 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ∈ V ) |
181 |
169 172 178 179 180
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
182 |
134
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
183 |
|
simp1 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) |
184 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑎 ) ∈ V ) |
185 |
169 182 183 179 184
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
186 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = 𝑏 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
187 |
186
|
ancoms |
⊢ ( ( 𝑠 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
188 |
187
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑏 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
189 |
|
simp2 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝐾 ) |
190 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑏 ) ∈ V ) |
191 |
169 188 189 179 190
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 ∗ 𝑐 ) = ( 𝑐 · 𝑏 ) ) |
192 |
185 191
|
oveq12d |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
193 |
168 181 192
|
3eqtr4d |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) ) |
194 |
193
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) ) |
195 |
1 2 3 4 5 6 7 8 9 10 11
|
rmodislmodlem |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 × 𝑏 ) ∗ 𝑐 ) = ( 𝑎 ∗ ( 𝑏 ∗ 𝑐 ) ) ) |
196 |
10
|
a1i |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
197 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑎 ∧ 𝑠 = 1 ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
198 |
197
|
ancoms |
⊢ ( ( 𝑠 = 1 ∧ 𝑣 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
199 |
198
|
adantl |
⊢ ( ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑠 = 1 ∧ 𝑣 = 𝑎 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
200 |
5 8
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → 1 ∈ 𝐾 ) |
201 |
50 200
|
syl |
⊢ ( 𝐹 ∈ CRing → 1 ∈ 𝐾 ) |
202 |
201
|
adantr |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → 1 ∈ 𝐾 ) |
203 |
|
simpr |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
204 |
|
ovexd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) ∈ V ) |
205 |
196 199 202 203 204
|
ovmpod |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 1 ∗ 𝑎 ) = ( 𝑎 · 1 ) ) |
206 |
|
simprr |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · 1 ) = 𝑤 ) |
207 |
206
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
208 |
207
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
209 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) |
210 |
72 209
|
ax-mp |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
211 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) |
212 |
72 211
|
ax-mp |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
213 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) |
214 |
78 213
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
215 |
|
oveq1 |
⊢ ( 𝑤 = 𝑎 → ( 𝑤 · 1 ) = ( 𝑎 · 1 ) ) |
216 |
|
id |
⊢ ( 𝑤 = 𝑎 → 𝑤 = 𝑎 ) |
217 |
215 216
|
eqeq12d |
⊢ ( 𝑤 = 𝑎 → ( ( 𝑤 · 1 ) = 𝑤 ↔ ( 𝑎 · 1 ) = 𝑎 ) ) |
218 |
217
|
rspcv |
⊢ ( 𝑎 ∈ 𝑉 → ( ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( 𝑎 · 1 ) = 𝑎 ) ) |
219 |
218
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( 𝑎 · 1 ) = 𝑎 ) ) |
220 |
214 219
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
221 |
212 220
|
syl |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
222 |
208 210 221
|
3syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
223 |
222
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
224 |
9 223
|
ax-mp |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) |
225 |
205 224
|
eqtrd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 1 ∗ 𝑎 ) = 𝑎 ) |
226 |
20 27 34 45 46 47 48 49 50 56 92 141 194 195 225
|
islmodd |
⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ LMod ) |