| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
| 10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 11 |
|
1zzd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> 1 e. ZZ ) |
| 12 |
|
nnaddcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
| 13 |
1 2 12
|
mp2an |
|- ( M + N ) e. NN |
| 14 |
13
|
nnzi |
|- ( M + N ) e. ZZ |
| 15 |
14
|
a1i |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( M + N ) e. ZZ ) |
| 16 |
1 2 3 4 5 6 7 8 9
|
ballotlemsdom |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( ( S ` C ) ` J ) e. ( 1 ... ( M + N ) ) ) |
| 17 |
16
|
elfzelzd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( ( S ` C ) ` J ) e. ZZ ) |
| 18 |
17
|
3adant3 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( S ` C ) ` J ) e. ZZ ) |
| 19 |
18 11
|
zsubcld |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) e. ZZ ) |
| 20 |
1 2 3 4 5 6 7 8 9
|
ballotlemsgt1 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> 1 < ( ( S ` C ) ` J ) ) |
| 21 |
|
zltlem1 |
|- ( ( 1 e. ZZ /\ ( ( S ` C ) ` J ) e. ZZ ) -> ( 1 < ( ( S ` C ) ` J ) <-> 1 <_ ( ( ( S ` C ) ` J ) - 1 ) ) ) |
| 22 |
21
|
biimpa |
|- ( ( ( 1 e. ZZ /\ ( ( S ` C ) ` J ) e. ZZ ) /\ 1 < ( ( S ` C ) ` J ) ) -> 1 <_ ( ( ( S ` C ) ` J ) - 1 ) ) |
| 23 |
11 18 20 22
|
syl21anc |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> 1 <_ ( ( ( S ` C ) ` J ) - 1 ) ) |
| 24 |
18
|
zred |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( S ` C ) ` J ) e. RR ) |
| 25 |
|
1red |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> 1 e. RR ) |
| 26 |
24 25
|
resubcld |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) e. RR ) |
| 27 |
|
simp1 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> C e. ( O \ E ) ) |
| 28 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
| 29 |
28
|
simpld |
|- ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) |
| 30 |
|
elfzelz |
|- ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) e. ZZ ) |
| 31 |
27 29 30
|
3syl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( I ` C ) e. ZZ ) |
| 32 |
31
|
zred |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( I ` C ) e. RR ) |
| 33 |
15
|
zred |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( M + N ) e. RR ) |
| 34 |
|
elfzelz |
|- ( J e. ( 1 ... ( M + N ) ) -> J e. ZZ ) |
| 35 |
34
|
3ad2ant2 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> J e. ZZ ) |
| 36 |
|
elfzle1 |
|- ( J e. ( 1 ... ( M + N ) ) -> 1 <_ J ) |
| 37 |
36
|
3ad2ant2 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> 1 <_ J ) |
| 38 |
35
|
zred |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> J e. RR ) |
| 39 |
|
simp3 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> J < ( I ` C ) ) |
| 40 |
38 32 39
|
ltled |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> J <_ ( I ` C ) ) |
| 41 |
11 31 35 37 40
|
elfzd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> J e. ( 1 ... ( I ` C ) ) ) |
| 42 |
1 2 3 4 5 6 7 8 9
|
ballotlemsel1i |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) ` J ) e. ( 1 ... ( I ` C ) ) ) |
| 43 |
27 41 42
|
syl2anc |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( S ` C ) ` J ) e. ( 1 ... ( I ` C ) ) ) |
| 44 |
|
elfzle2 |
|- ( ( ( S ` C ) ` J ) e. ( 1 ... ( I ` C ) ) -> ( ( S ` C ) ` J ) <_ ( I ` C ) ) |
| 45 |
43 44
|
syl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( S ` C ) ` J ) <_ ( I ` C ) ) |
| 46 |
|
zlem1lt |
|- ( ( ( ( S ` C ) ` J ) e. ZZ /\ ( I ` C ) e. ZZ ) -> ( ( ( S ` C ) ` J ) <_ ( I ` C ) <-> ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) ) ) |
| 47 |
18 31 46
|
syl2anc |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) <_ ( I ` C ) <-> ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) ) ) |
| 48 |
45 47
|
mpbid |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) ) |
| 49 |
26 32 48
|
ltled |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) <_ ( I ` C ) ) |
| 50 |
|
elfzle2 |
|- ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( I ` C ) <_ ( M + N ) ) |
| 51 |
27 29 50
|
3syl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( I ` C ) <_ ( M + N ) ) |
| 52 |
26 32 33 49 51
|
letrd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) <_ ( M + N ) ) |
| 53 |
11 15 19 23 52
|
elfzd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) e. ( 1 ... ( M + N ) ) ) |
| 54 |
|
biid |
|- ( ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) <-> ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) ) |
| 55 |
48 54
|
sylibr |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) ) |
| 56 |
1 2 3 4 5 6 7 8
|
ballotlemi |
|- ( C e. ( O \ E ) -> ( I ` C ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) |
| 57 |
56
|
breq2d |
|- ( C e. ( O \ E ) -> ( ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) <-> ( ( ( S ` C ) ` J ) - 1 ) < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( ( S ` C ) ` J ) - 1 ) < ( I ` C ) <-> ( ( ( S ` C ) ` J ) - 1 ) < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
| 59 |
55 58
|
mpbid |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( S ` C ) ` J ) - 1 ) < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) |
| 60 |
|
ltso |
|- < Or RR |
| 61 |
60
|
a1i |
|- ( C e. ( O \ E ) -> < Or RR ) |
| 62 |
1 2 3 4 5 6 7 8
|
ballotlemsup |
|- ( C e. ( O \ E ) -> E. z e. RR ( A. w e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -. w < z /\ A. w e. RR ( z < w -> E. y e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } y < w ) ) ) |
| 63 |
61 62
|
inflb |
|- ( C e. ( O \ E ) -> ( ( ( ( S ` C ) ` J ) - 1 ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } -> -. ( ( ( S ` C ) ` J ) - 1 ) < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) ) |
| 64 |
63
|
con2d |
|- ( C e. ( O \ E ) -> ( ( ( ( S ` C ) ` J ) - 1 ) < inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) -> -. ( ( ( S ` C ) ` J ) - 1 ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } ) ) |
| 65 |
27 59 64
|
sylc |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> -. ( ( ( S ` C ) ` J ) - 1 ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } ) |
| 66 |
|
fveqeq2 |
|- ( k = ( ( ( S ` C ) ` J ) - 1 ) -> ( ( ( F ` C ) ` k ) = 0 <-> ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) ) |
| 67 |
66
|
elrab |
|- ( ( ( ( S ` C ) ` J ) - 1 ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } <-> ( ( ( ( S ` C ) ` J ) - 1 ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) ) |
| 68 |
65 67
|
sylnib |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> -. ( ( ( ( S ` C ) ` J ) - 1 ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) ) |
| 69 |
|
imnan |
|- ( ( ( ( ( S ` C ) ` J ) - 1 ) e. ( 1 ... ( M + N ) ) -> -. ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) <-> -. ( ( ( ( S ` C ) ` J ) - 1 ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) ) |
| 70 |
68 69
|
sylibr |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( ( S ` C ) ` J ) - 1 ) e. ( 1 ... ( M + N ) ) -> -. ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) ) |
| 71 |
53 70
|
mpd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> -. ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) |
| 72 |
71
|
neqned |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) =/= 0 ) |
| 73 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemro |
|- ( C e. ( O \ E ) -> ( R ` C ) e. O ) |
| 74 |
73
|
adantr |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( R ` C ) e. O ) |
| 75 |
|
elfzelz |
|- ( J e. ( 1 ... ( I ` C ) ) -> J e. ZZ ) |
| 76 |
75
|
adantl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> J e. ZZ ) |
| 77 |
1 2 3 4 5 74 76
|
ballotlemfelz |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( F ` ( R ` C ) ) ` J ) e. ZZ ) |
| 78 |
77
|
zcnd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( F ` ( R ` C ) ) ` J ) e. CC ) |
| 79 |
78
|
negeq0d |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( F ` ( R ` C ) ) ` J ) = 0 <-> -u ( ( F ` ( R ` C ) ) ` J ) = 0 ) ) |
| 80 |
|
eqid |
|- ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) |
| 81 |
1 2 3 4 5 6 7 8 9 10 80
|
ballotlemfrceq |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = -u ( ( F ` ( R ` C ) ) ` J ) ) |
| 82 |
81
|
eqeq1d |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 <-> -u ( ( F ` ( R ` C ) ) ` J ) = 0 ) ) |
| 83 |
79 82
|
bitr4d |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( F ` ( R ` C ) ) ` J ) = 0 <-> ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) = 0 ) ) |
| 84 |
83
|
necon3bid |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( F ` ( R ` C ) ) ` J ) =/= 0 <-> ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) =/= 0 ) ) |
| 85 |
27 41 84
|
syl2anc |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( ( F ` ( R ` C ) ) ` J ) =/= 0 <-> ( ( F ` C ) ` ( ( ( S ` C ) ` J ) - 1 ) ) =/= 0 ) ) |
| 86 |
72 85
|
mpbird |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) /\ J < ( I ` C ) ) -> ( ( F ` ( R ` C ) ) ` J ) =/= 0 ) |