Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme22.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme22.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme22.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme22.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme22eALT.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme22eALT.f |
|- F = ( ( y .\/ U ) ./\ ( Q .\/ ( ( P .\/ y ) ./\ W ) ) ) |
8 |
|
cdleme22eALT.g |
|- G = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
9 |
|
cdleme22eALT.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) ) |
10 |
|
cdleme22eALT.o |
|- O = ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) |
11 |
|
simp11 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> K e. HL ) |
12 |
11
|
hllatd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> K e. Lat ) |
13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P e. A ) |
14 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> Q e. A ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
17 |
11 13 14 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
18 |
|
simp12 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> W e. H ) |
19 |
|
simp3ll |
|- ( ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> y e. A ) |
20 |
19
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> y e. A ) |
21 |
1 2 3 4 5 6 7 15
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ y e. A ) ) -> F e. ( Base ` K ) ) |
22 |
11 18 13 14 20 21
|
syl23anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> F e. ( Base ` K ) ) |
23 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> S e. A ) |
24 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ y e. A ) -> ( S .\/ y ) e. ( Base ` K ) ) |
25 |
11 23 20 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( S .\/ y ) e. ( Base ` K ) ) |
26 |
15 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
27 |
18 26
|
syl |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> W e. ( Base ` K ) ) |
28 |
15 3
|
latmcl |
|- ( ( K e. Lat /\ ( S .\/ y ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( S .\/ y ) ./\ W ) e. ( Base ` K ) ) |
29 |
12 25 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( S .\/ y ) ./\ W ) e. ( Base ` K ) ) |
30 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ ( ( S .\/ y ) ./\ W ) e. ( Base ` K ) ) -> ( F .\/ ( ( S .\/ y ) ./\ W ) ) e. ( Base ` K ) ) |
31 |
12 22 29 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( F .\/ ( ( S .\/ y ) ./\ W ) ) e. ( Base ` K ) ) |
32 |
15 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) ) .<_ ( P .\/ Q ) ) |
33 |
12 17 31 32
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) ) .<_ ( P .\/ Q ) ) |
34 |
9 33
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> N .<_ ( P .\/ Q ) ) |
35 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
36 |
|
simp13 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> T e. A ) |
37 |
|
simp321 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> V e. A ) |
38 |
|
simp322 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> V .<_ W ) |
39 |
37 38
|
jca |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( V e. A /\ V .<_ W ) ) |
40 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P =/= Q ) |
41 |
|
simp323 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ V ) = ( P .\/ Q ) ) |
42 |
1 2 3 4 5 6
|
cdleme22a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ T e. A ) /\ ( ( V e. A /\ V .<_ W ) /\ P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) ) -> V = U ) |
43 |
11 18 35 14 36 39 40 41 42
|
syl233anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> V = U ) |
44 |
43
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( O .\/ V ) = ( O .\/ U ) ) |
45 |
10
|
oveq1i |
|- ( O .\/ U ) = ( ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) |
46 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> -. P .<_ W ) |
47 |
1 2 3 4 5 6
|
cdleme0a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
48 |
11 18 13 46 14 40 47
|
syl222anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U e. A ) |
49 |
|
simp3rl |
|- ( ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z e. A ) |
50 |
49
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z e. A ) |
51 |
1 2 3 4 5 6 8 15
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ z e. A ) ) -> G e. ( Base ` K ) ) |
52 |
11 18 13 14 50 51
|
syl23anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> G e. ( Base ` K ) ) |
53 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ z e. A ) -> ( T .\/ z ) e. ( Base ` K ) ) |
54 |
11 36 50 53
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ z ) e. ( Base ` K ) ) |
55 |
15 3
|
latmcl |
|- ( ( K e. Lat /\ ( T .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) |
56 |
12 54 27 55
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) |
57 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ G e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
58 |
12 52 56 57
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
59 |
1 2 3 4 5 6
|
cdlemeulpq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) ) |
60 |
11 18 13 14 59
|
syl22anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U .<_ ( P .\/ Q ) ) |
61 |
15 1 2 3 4
|
atmod2i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) /\ U .<_ ( P .\/ Q ) ) -> ( ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) ) |
62 |
11 48 17 58 60 61
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) ) |
63 |
45 62
|
eqtr2id |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( O .\/ U ) ) |
64 |
43
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ V ) = ( T .\/ U ) ) |
65 |
41 64
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) = ( T .\/ U ) ) |
66 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
67 |
11 36 48 66
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
68 |
15 4
|
atbase |
|- ( z e. A -> z e. ( Base ` K ) ) |
69 |
50 68
|
syl |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z e. ( Base ` K ) ) |
70 |
15 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( T .\/ U ) .<_ ( ( T .\/ U ) .\/ z ) ) |
71 |
12 67 69 70
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ U ) .<_ ( ( T .\/ U ) .\/ z ) ) |
72 |
2 4
|
hlatj32 |
|- ( ( K e. HL /\ ( T e. A /\ U e. A /\ z e. A ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( T .\/ z ) .\/ U ) ) |
73 |
11 36 48 50 72
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( T .\/ z ) .\/ U ) ) |
74 |
15 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
75 |
48 74
|
syl |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U e. ( Base ` K ) ) |
76 |
15 2
|
latj32 |
|- ( ( K e. Lat /\ ( z e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) ) -> ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
77 |
12 69 75 56 76
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
78 |
15 2
|
latj32 |
|- ( ( K e. Lat /\ ( G e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( G .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
79 |
12 52 56 75 78
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( G .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
80 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ z e. A ) -> ( P .\/ z ) e. ( Base ` K ) ) |
81 |
11 13 50 80
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ z ) e. ( Base ` K ) ) |
82 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ z e. A ) -> P .<_ ( P .\/ z ) ) |
83 |
11 13 50 82
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P .<_ ( P .\/ z ) ) |
84 |
15 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ z ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ z ) ./\ ( P .\/ W ) ) ) |
85 |
11 13 81 27 83 84
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ z ) ./\ ( P .\/ W ) ) ) |
86 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
87 |
1 2 86 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
88 |
11 18 35 87
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
89 |
88
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ z ) ./\ ( P .\/ W ) ) = ( ( P .\/ z ) ./\ ( 1. ` K ) ) ) |
90 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
91 |
11 90
|
syl |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> K e. OL ) |
92 |
15 3 86
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ z ) e. ( Base ` K ) ) -> ( ( P .\/ z ) ./\ ( 1. ` K ) ) = ( P .\/ z ) ) |
93 |
91 81 92
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ z ) ./\ ( 1. ` K ) ) = ( P .\/ z ) ) |
94 |
85 89 93
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( P .\/ z ) ) |
95 |
94
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ z ) .\/ Q ) ) |
96 |
6
|
oveq2i |
|- ( Q .\/ U ) = ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) |
97 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
98 |
11 13 14 97
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> Q .<_ ( P .\/ Q ) ) |
99 |
15 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ Q .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
100 |
11 14 17 27 98 99
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
101 |
96 100
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ U ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
102 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
103 |
1 2 86 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
104 |
11 18 102 103
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
105 |
104
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
106 |
15 3 86
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
107 |
91 17 106
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
108 |
101 105 107
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ U ) = ( P .\/ Q ) ) |
109 |
108
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
110 |
15 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
111 |
13 110
|
syl |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P e. ( Base ` K ) ) |
112 |
15 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) |
113 |
12 81 27 112
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) |
114 |
15 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
115 |
14 114
|
syl |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> Q e. ( Base ` K ) ) |
116 |
15 2
|
latj32 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
117 |
12 111 113 115 116
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
118 |
109 117
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) ) |
119 |
2 4
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ z e. A ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( P .\/ z ) .\/ Q ) ) |
120 |
11 13 14 50 119
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( P .\/ z ) .\/ Q ) ) |
121 |
95 118 120
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
122 |
15 2
|
latj32 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) |
123 |
12 115 75 113 122
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) |
124 |
121 123
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) |
125 |
124
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
126 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) |
127 |
12 17 69 126
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) |
128 |
15 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> z .<_ ( ( P .\/ Q ) .\/ z ) ) |
129 |
12 17 69 128
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z .<_ ( ( P .\/ Q ) .\/ z ) ) |
130 |
15 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( z e. A /\ U e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) /\ z .<_ ( ( P .\/ Q ) .\/ z ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) ) |
131 |
11 50 75 127 129 130
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) ) |
132 |
8
|
oveq1i |
|- ( G .\/ U ) = ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) |
133 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ z e. A /\ U e. A ) -> ( z .\/ U ) e. ( Base ` K ) ) |
134 |
11 50 48 133
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ U ) e. ( Base ` K ) ) |
135 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
136 |
12 115 113 135
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
137 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ z e. A /\ U e. A ) -> U .<_ ( z .\/ U ) ) |
138 |
11 50 48 137
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U .<_ ( z .\/ U ) ) |
139 |
15 1 2 3 4
|
atmod2i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( z .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) /\ U .<_ ( z .\/ U ) ) -> ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
140 |
11 48 134 136 138 139
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
141 |
132 140
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
142 |
125 131 141
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ U ) = ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) ) |
143 |
15 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ z ) ) |
144 |
12 17 69 143
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ z ) ) |
145 |
15 1 12 75 17 127 60 144
|
lattrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U .<_ ( ( P .\/ Q ) .\/ z ) ) |
146 |
15 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) -> ( U .<_ ( ( P .\/ Q ) .\/ z ) <-> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) ) |
147 |
12 75 127 146
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( U .<_ ( ( P .\/ Q ) .\/ z ) <-> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) ) |
148 |
145 147
|
mpbid |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) |
149 |
148
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( z .\/ U ) ) |
150 |
142 149
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ U ) = ( z .\/ U ) ) |
151 |
150
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
152 |
79 151
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
153 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ z e. A ) -> z .<_ ( T .\/ z ) ) |
154 |
11 36 50 153
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z .<_ ( T .\/ z ) ) |
155 |
15 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( z e. A /\ ( T .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ z .<_ ( T .\/ z ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( z .\/ W ) ) ) |
156 |
11 50 54 27 154 155
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( z .\/ W ) ) ) |
157 |
|
simp33r |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z e. A /\ -. z .<_ W ) ) |
158 |
1 2 86 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( z e. A /\ -. z .<_ W ) ) -> ( z .\/ W ) = ( 1. ` K ) ) |
159 |
11 18 157 158
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ W ) = ( 1. ` K ) ) |
160 |
159
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) ./\ ( z .\/ W ) ) = ( ( T .\/ z ) ./\ ( 1. ` K ) ) ) |
161 |
15 3 86
|
olm11 |
|- ( ( K e. OL /\ ( T .\/ z ) e. ( Base ` K ) ) -> ( ( T .\/ z ) ./\ ( 1. ` K ) ) = ( T .\/ z ) ) |
162 |
91 54 161
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) ./\ ( 1. ` K ) ) = ( T .\/ z ) ) |
163 |
156 160 162
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ z ) = ( z .\/ ( ( T .\/ z ) ./\ W ) ) ) |
164 |
163
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) .\/ U ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
165 |
77 152 164
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) .\/ U ) = ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
166 |
73 165
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
167 |
71 166
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ U ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
168 |
65 167
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
169 |
15 2
|
latjcl |
|- ( ( K e. Lat /\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) |
170 |
12 58 75 169
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) |
171 |
15 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) <-> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) ) |
172 |
12 17 170 171
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) <-> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) ) |
173 |
168 172
|
mpbid |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) |
174 |
44 63 173
|
3eqtr2rd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) = ( O .\/ V ) ) |
175 |
34 174
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> N .<_ ( O .\/ V ) ) |