| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chebbnd1lem1.1 |
|- K = if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) |
| 2 |
|
4nn |
|- 4 e. NN |
| 3 |
|
eluznn |
|- ( ( 4 e. NN /\ N e. ( ZZ>= ` 4 ) ) -> N e. NN ) |
| 4 |
2 3
|
mpan |
|- ( N e. ( ZZ>= ` 4 ) -> N e. NN ) |
| 5 |
4
|
nnnn0d |
|- ( N e. ( ZZ>= ` 4 ) -> N e. NN0 ) |
| 6 |
|
nnexpcl |
|- ( ( 4 e. NN /\ N e. NN0 ) -> ( 4 ^ N ) e. NN ) |
| 7 |
2 5 6
|
sylancr |
|- ( N e. ( ZZ>= ` 4 ) -> ( 4 ^ N ) e. NN ) |
| 8 |
7
|
nnrpd |
|- ( N e. ( ZZ>= ` 4 ) -> ( 4 ^ N ) e. RR+ ) |
| 9 |
4
|
nnrpd |
|- ( N e. ( ZZ>= ` 4 ) -> N e. RR+ ) |
| 10 |
8 9
|
rpdivcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 4 ^ N ) / N ) e. RR+ ) |
| 11 |
10
|
relogcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( ( 4 ^ N ) / N ) ) e. RR ) |
| 12 |
|
fzctr |
|- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
| 13 |
5 12
|
syl |
|- ( N e. ( ZZ>= ` 4 ) -> N e. ( 0 ... ( 2 x. N ) ) ) |
| 14 |
|
bccl2 |
|- ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) e. NN ) |
| 15 |
13 14
|
syl |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 2 x. N ) _C N ) e. NN ) |
| 16 |
15
|
nnrpd |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 2 x. N ) _C N ) e. RR+ ) |
| 17 |
16
|
relogcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( ( 2 x. N ) _C N ) ) e. RR ) |
| 18 |
|
2z |
|- 2 e. ZZ |
| 19 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 4 ) -> N e. ZZ ) |
| 20 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
| 21 |
18 19 20
|
sylancr |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 x. N ) e. ZZ ) |
| 22 |
21
|
zred |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 x. N ) e. RR ) |
| 23 |
|
ppicl |
|- ( ( 2 x. N ) e. RR -> ( ppi ` ( 2 x. N ) ) e. NN0 ) |
| 24 |
22 23
|
syl |
|- ( N e. ( ZZ>= ` 4 ) -> ( ppi ` ( 2 x. N ) ) e. NN0 ) |
| 25 |
24
|
nn0red |
|- ( N e. ( ZZ>= ` 4 ) -> ( ppi ` ( 2 x. N ) ) e. RR ) |
| 26 |
|
2nn |
|- 2 e. NN |
| 27 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 28 |
26 4 27
|
sylancr |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 x. N ) e. NN ) |
| 29 |
28
|
nnrpd |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 x. N ) e. RR+ ) |
| 30 |
29
|
relogcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( 2 x. N ) ) e. RR ) |
| 31 |
25 30
|
remulcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( ppi ` ( 2 x. N ) ) x. ( log ` ( 2 x. N ) ) ) e. RR ) |
| 32 |
|
bclbnd |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) ) |
| 33 |
|
logltb |
|- ( ( ( ( 4 ^ N ) / N ) e. RR+ /\ ( ( 2 x. N ) _C N ) e. RR+ ) -> ( ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) <-> ( log ` ( ( 4 ^ N ) / N ) ) < ( log ` ( ( 2 x. N ) _C N ) ) ) ) |
| 34 |
10 16 33
|
syl2anc |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) <-> ( log ` ( ( 4 ^ N ) / N ) ) < ( log ` ( ( 2 x. N ) _C N ) ) ) ) |
| 35 |
32 34
|
mpbid |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( ( 4 ^ N ) / N ) ) < ( log ` ( ( 2 x. N ) _C N ) ) ) |
| 36 |
28 15
|
ifcld |
|- ( N e. ( ZZ>= ` 4 ) -> if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) e. NN ) |
| 37 |
1 36
|
eqeltrid |
|- ( N e. ( ZZ>= ` 4 ) -> K e. NN ) |
| 38 |
37
|
nnred |
|- ( N e. ( ZZ>= ` 4 ) -> K e. RR ) |
| 39 |
|
ppicl |
|- ( K e. RR -> ( ppi ` K ) e. NN0 ) |
| 40 |
38 39
|
syl |
|- ( N e. ( ZZ>= ` 4 ) -> ( ppi ` K ) e. NN0 ) |
| 41 |
40
|
nn0red |
|- ( N e. ( ZZ>= ` 4 ) -> ( ppi ` K ) e. RR ) |
| 42 |
41 30
|
remulcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( ppi ` K ) x. ( log ` ( 2 x. N ) ) ) e. RR ) |
| 43 |
|
fzfid |
|- ( N e. ( ZZ>= ` 4 ) -> ( 1 ... K ) e. Fin ) |
| 44 |
|
inss1 |
|- ( ( 1 ... K ) i^i Prime ) C_ ( 1 ... K ) |
| 45 |
|
ssfi |
|- ( ( ( 1 ... K ) e. Fin /\ ( ( 1 ... K ) i^i Prime ) C_ ( 1 ... K ) ) -> ( ( 1 ... K ) i^i Prime ) e. Fin ) |
| 46 |
43 44 45
|
sylancl |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 1 ... K ) i^i Prime ) e. Fin ) |
| 47 |
37
|
nnzd |
|- ( N e. ( ZZ>= ` 4 ) -> K e. ZZ ) |
| 48 |
15
|
nnzd |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 2 x. N ) _C N ) e. ZZ ) |
| 49 |
15
|
nnred |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 2 x. N ) _C N ) e. RR ) |
| 50 |
|
min2 |
|- ( ( ( 2 x. N ) e. RR /\ ( ( 2 x. N ) _C N ) e. RR ) -> if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) <_ ( ( 2 x. N ) _C N ) ) |
| 51 |
22 49 50
|
syl2anc |
|- ( N e. ( ZZ>= ` 4 ) -> if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) <_ ( ( 2 x. N ) _C N ) ) |
| 52 |
1 51
|
eqbrtrid |
|- ( N e. ( ZZ>= ` 4 ) -> K <_ ( ( 2 x. N ) _C N ) ) |
| 53 |
|
eluz2 |
|- ( ( ( 2 x. N ) _C N ) e. ( ZZ>= ` K ) <-> ( K e. ZZ /\ ( ( 2 x. N ) _C N ) e. ZZ /\ K <_ ( ( 2 x. N ) _C N ) ) ) |
| 54 |
47 48 52 53
|
syl3anbrc |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 2 x. N ) _C N ) e. ( ZZ>= ` K ) ) |
| 55 |
|
fzss2 |
|- ( ( ( 2 x. N ) _C N ) e. ( ZZ>= ` K ) -> ( 1 ... K ) C_ ( 1 ... ( ( 2 x. N ) _C N ) ) ) |
| 56 |
54 55
|
syl |
|- ( N e. ( ZZ>= ` 4 ) -> ( 1 ... K ) C_ ( 1 ... ( ( 2 x. N ) _C N ) ) ) |
| 57 |
56
|
ssrind |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 1 ... K ) i^i Prime ) C_ ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) |
| 58 |
57
|
sselda |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) |
| 59 |
|
simpr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) |
| 60 |
59
|
elin1d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> k e. ( 1 ... ( ( 2 x. N ) _C N ) ) ) |
| 61 |
|
elfznn |
|- ( k e. ( 1 ... ( ( 2 x. N ) _C N ) ) -> k e. NN ) |
| 62 |
60 61
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> k e. NN ) |
| 63 |
59
|
elin2d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> k e. Prime ) |
| 64 |
15
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( ( 2 x. N ) _C N ) e. NN ) |
| 65 |
63 64
|
pccld |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 66 |
62 65
|
nnexpcld |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) e. NN ) |
| 67 |
66
|
nnrpd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) e. RR+ ) |
| 68 |
67
|
relogcld |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) e. RR ) |
| 69 |
58 68
|
syldan |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) e. RR ) |
| 70 |
30
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( log ` ( 2 x. N ) ) e. RR ) |
| 71 |
|
elinel2 |
|- ( k e. ( ( 1 ... K ) i^i Prime ) -> k e. Prime ) |
| 72 |
|
bposlem1 |
|- ( ( N e. NN /\ k e. Prime ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
| 73 |
4 71 72
|
syl2an |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
| 74 |
58 67
|
syldan |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) e. RR+ ) |
| 75 |
74
|
reeflogd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( exp ` ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) ) = ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 76 |
29
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( 2 x. N ) e. RR+ ) |
| 77 |
76
|
reeflogd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( exp ` ( log ` ( 2 x. N ) ) ) = ( 2 x. N ) ) |
| 78 |
73 75 77
|
3brtr4d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( exp ` ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) ) <_ ( exp ` ( log ` ( 2 x. N ) ) ) ) |
| 79 |
|
efle |
|- ( ( ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) e. RR /\ ( log ` ( 2 x. N ) ) e. RR ) -> ( ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) <_ ( log ` ( 2 x. N ) ) <-> ( exp ` ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) ) <_ ( exp ` ( log ` ( 2 x. N ) ) ) ) ) |
| 80 |
69 70 79
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) <_ ( log ` ( 2 x. N ) ) <-> ( exp ` ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) ) <_ ( exp ` ( log ` ( 2 x. N ) ) ) ) ) |
| 81 |
78 80
|
mpbird |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) <_ ( log ` ( 2 x. N ) ) ) |
| 82 |
46 69 70 81
|
fsumle |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) <_ sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( 2 x. N ) ) ) |
| 83 |
68
|
recnd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) e. CC ) |
| 84 |
58 83
|
syldan |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... K ) i^i Prime ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) e. CC ) |
| 85 |
|
eldifn |
|- ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) -> -. k e. ( ( 1 ... K ) i^i Prime ) ) |
| 86 |
85
|
adantl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> -. k e. ( ( 1 ... K ) i^i Prime ) ) |
| 87 |
|
simpr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) |
| 88 |
87
|
eldifad |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) |
| 89 |
88
|
elin1d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k e. ( 1 ... ( ( 2 x. N ) _C N ) ) ) |
| 90 |
89 61
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k e. NN ) |
| 91 |
90
|
adantrr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k e. NN ) |
| 92 |
91
|
nnred |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k e. RR ) |
| 93 |
88 66
|
syldan |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) e. NN ) |
| 94 |
93
|
nnred |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) e. RR ) |
| 95 |
94
|
adantrr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) e. RR ) |
| 96 |
22
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( 2 x. N ) e. RR ) |
| 97 |
91
|
nncnd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k e. CC ) |
| 98 |
97
|
exp1d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k ^ 1 ) = k ) |
| 99 |
91
|
nnge1d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> 1 <_ k ) |
| 100 |
|
simprr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) |
| 101 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 102 |
100 101
|
eleqtrdi |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k pCnt ( ( 2 x. N ) _C N ) ) e. ( ZZ>= ` 1 ) ) |
| 103 |
92 99 102
|
leexp2ad |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k ^ 1 ) <_ ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 104 |
98 103
|
eqbrtrrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k <_ ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 105 |
4
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> N e. NN ) |
| 106 |
88
|
elin2d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k e. Prime ) |
| 107 |
106
|
adantrr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k e. Prime ) |
| 108 |
105 107 72
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
| 109 |
92 95 96 104 108
|
letrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k <_ ( 2 x. N ) ) |
| 110 |
|
elfzle2 |
|- ( k e. ( 1 ... ( ( 2 x. N ) _C N ) ) -> k <_ ( ( 2 x. N ) _C N ) ) |
| 111 |
89 110
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k <_ ( ( 2 x. N ) _C N ) ) |
| 112 |
111
|
adantrr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k <_ ( ( 2 x. N ) _C N ) ) |
| 113 |
49
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( ( 2 x. N ) _C N ) e. RR ) |
| 114 |
|
lemin |
|- ( ( k e. RR /\ ( 2 x. N ) e. RR /\ ( ( 2 x. N ) _C N ) e. RR ) -> ( k <_ if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) <-> ( k <_ ( 2 x. N ) /\ k <_ ( ( 2 x. N ) _C N ) ) ) ) |
| 115 |
92 96 113 114
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k <_ if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) <-> ( k <_ ( 2 x. N ) /\ k <_ ( ( 2 x. N ) _C N ) ) ) ) |
| 116 |
109 112 115
|
mpbir2and |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k <_ if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) ) |
| 117 |
116 1
|
breqtrrdi |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k <_ K ) |
| 118 |
37
|
adantr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> K e. NN ) |
| 119 |
118
|
nnzd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> K e. ZZ ) |
| 120 |
|
fznn |
|- ( K e. ZZ -> ( k e. ( 1 ... K ) <-> ( k e. NN /\ k <_ K ) ) ) |
| 121 |
119 120
|
syl |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> ( k e. ( 1 ... K ) <-> ( k e. NN /\ k <_ K ) ) ) |
| 122 |
91 117 121
|
mpbir2and |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k e. ( 1 ... K ) ) |
| 123 |
122 107
|
elind |
|- ( ( N e. ( ZZ>= ` 4 ) /\ ( k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) ) -> k e. ( ( 1 ... K ) i^i Prime ) ) |
| 124 |
123
|
expr |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN -> k e. ( ( 1 ... K ) i^i Prime ) ) ) |
| 125 |
86 124
|
mtod |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> -. ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN ) |
| 126 |
88 65
|
syldan |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 127 |
|
elnn0 |
|- ( ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN0 <-> ( ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN \/ ( k pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 128 |
126 127
|
sylib |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN \/ ( k pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 129 |
128
|
ord |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( -. ( k pCnt ( ( 2 x. N ) _C N ) ) e. NN -> ( k pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 130 |
125 129
|
mpd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
| 131 |
130
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) = ( k ^ 0 ) ) |
| 132 |
90
|
nncnd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> k e. CC ) |
| 133 |
132
|
exp0d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k ^ 0 ) = 1 ) |
| 134 |
131 133
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) = 1 ) |
| 135 |
134
|
fveq2d |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = ( log ` 1 ) ) |
| 136 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 137 |
135 136
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) \ ( ( 1 ... K ) i^i Prime ) ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = 0 ) |
| 138 |
|
fzfid |
|- ( N e. ( ZZ>= ` 4 ) -> ( 1 ... ( ( 2 x. N ) _C N ) ) e. Fin ) |
| 139 |
|
inss1 |
|- ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) C_ ( 1 ... ( ( 2 x. N ) _C N ) ) |
| 140 |
|
ssfi |
|- ( ( ( 1 ... ( ( 2 x. N ) _C N ) ) e. Fin /\ ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) C_ ( 1 ... ( ( 2 x. N ) _C N ) ) ) -> ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) e. Fin ) |
| 141 |
138 139 140
|
sylancl |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) e. Fin ) |
| 142 |
57 84 137 141
|
fsumss |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = sum_ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) ) |
| 143 |
62
|
nnrpd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> k e. RR+ ) |
| 144 |
65
|
nn0zd |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( k pCnt ( ( 2 x. N ) _C N ) ) e. ZZ ) |
| 145 |
|
relogexp |
|- ( ( k e. RR+ /\ ( k pCnt ( ( 2 x. N ) _C N ) ) e. ZZ ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = ( ( k pCnt ( ( 2 x. N ) _C N ) ) x. ( log ` k ) ) ) |
| 146 |
143 144 145
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 4 ) /\ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ) -> ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = ( ( k pCnt ( ( 2 x. N ) _C N ) ) x. ( log ` k ) ) ) |
| 147 |
146
|
sumeq2dv |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = sum_ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ( ( k pCnt ( ( 2 x. N ) _C N ) ) x. ( log ` k ) ) ) |
| 148 |
|
pclogsum |
|- ( ( ( 2 x. N ) _C N ) e. NN -> sum_ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ( ( k pCnt ( ( 2 x. N ) _C N ) ) x. ( log ` k ) ) = ( log ` ( ( 2 x. N ) _C N ) ) ) |
| 149 |
15 148
|
syl |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... ( ( 2 x. N ) _C N ) ) i^i Prime ) ( ( k pCnt ( ( 2 x. N ) _C N ) ) x. ( log ` k ) ) = ( log ` ( ( 2 x. N ) _C N ) ) ) |
| 150 |
142 147 149
|
3eqtrd |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( k ^ ( k pCnt ( ( 2 x. N ) _C N ) ) ) ) = ( log ` ( ( 2 x. N ) _C N ) ) ) |
| 151 |
30
|
recnd |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( 2 x. N ) ) e. CC ) |
| 152 |
|
fsumconst |
|- ( ( ( ( 1 ... K ) i^i Prime ) e. Fin /\ ( log ` ( 2 x. N ) ) e. CC ) -> sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( 2 x. N ) ) = ( ( # ` ( ( 1 ... K ) i^i Prime ) ) x. ( log ` ( 2 x. N ) ) ) ) |
| 153 |
46 151 152
|
syl2anc |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( 2 x. N ) ) = ( ( # ` ( ( 1 ... K ) i^i Prime ) ) x. ( log ` ( 2 x. N ) ) ) ) |
| 154 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 155 |
|
ppival2g |
|- ( ( K e. ZZ /\ 2 e. ( ZZ>= ` 1 ) ) -> ( ppi ` K ) = ( # ` ( ( 1 ... K ) i^i Prime ) ) ) |
| 156 |
47 154 155
|
sylancl |
|- ( N e. ( ZZ>= ` 4 ) -> ( ppi ` K ) = ( # ` ( ( 1 ... K ) i^i Prime ) ) ) |
| 157 |
156
|
oveq1d |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( ppi ` K ) x. ( log ` ( 2 x. N ) ) ) = ( ( # ` ( ( 1 ... K ) i^i Prime ) ) x. ( log ` ( 2 x. N ) ) ) ) |
| 158 |
153 157
|
eqtr4d |
|- ( N e. ( ZZ>= ` 4 ) -> sum_ k e. ( ( 1 ... K ) i^i Prime ) ( log ` ( 2 x. N ) ) = ( ( ppi ` K ) x. ( log ` ( 2 x. N ) ) ) ) |
| 159 |
82 150 158
|
3brtr3d |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( ( 2 x. N ) _C N ) ) <_ ( ( ppi ` K ) x. ( log ` ( 2 x. N ) ) ) ) |
| 160 |
|
min1 |
|- ( ( ( 2 x. N ) e. RR /\ ( ( 2 x. N ) _C N ) e. RR ) -> if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) <_ ( 2 x. N ) ) |
| 161 |
22 49 160
|
syl2anc |
|- ( N e. ( ZZ>= ` 4 ) -> if ( ( 2 x. N ) <_ ( ( 2 x. N ) _C N ) , ( 2 x. N ) , ( ( 2 x. N ) _C N ) ) <_ ( 2 x. N ) ) |
| 162 |
1 161
|
eqbrtrid |
|- ( N e. ( ZZ>= ` 4 ) -> K <_ ( 2 x. N ) ) |
| 163 |
|
ppiwordi |
|- ( ( K e. RR /\ ( 2 x. N ) e. RR /\ K <_ ( 2 x. N ) ) -> ( ppi ` K ) <_ ( ppi ` ( 2 x. N ) ) ) |
| 164 |
38 22 162 163
|
syl3anc |
|- ( N e. ( ZZ>= ` 4 ) -> ( ppi ` K ) <_ ( ppi ` ( 2 x. N ) ) ) |
| 165 |
|
1red |
|- ( N e. ( ZZ>= ` 4 ) -> 1 e. RR ) |
| 166 |
|
2re |
|- 2 e. RR |
| 167 |
166
|
a1i |
|- ( N e. ( ZZ>= ` 4 ) -> 2 e. RR ) |
| 168 |
|
1lt2 |
|- 1 < 2 |
| 169 |
168
|
a1i |
|- ( N e. ( ZZ>= ` 4 ) -> 1 < 2 ) |
| 170 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 171 |
4
|
nnge1d |
|- ( N e. ( ZZ>= ` 4 ) -> 1 <_ N ) |
| 172 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 4 ) -> N e. RR ) |
| 173 |
|
2pos |
|- 0 < 2 |
| 174 |
166 173
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 175 |
174
|
a1i |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 176 |
|
lemul2 |
|- ( ( 1 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) ) |
| 177 |
165 172 175 176
|
syl3anc |
|- ( N e. ( ZZ>= ` 4 ) -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) ) |
| 178 |
171 177
|
mpbid |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 x. 1 ) <_ ( 2 x. N ) ) |
| 179 |
170 178
|
eqbrtrrid |
|- ( N e. ( ZZ>= ` 4 ) -> 2 <_ ( 2 x. N ) ) |
| 180 |
165 167 22 169 179
|
ltletrd |
|- ( N e. ( ZZ>= ` 4 ) -> 1 < ( 2 x. N ) ) |
| 181 |
22 180
|
rplogcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( 2 x. N ) ) e. RR+ ) |
| 182 |
41 25 181
|
lemul1d |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( ppi ` K ) <_ ( ppi ` ( 2 x. N ) ) <-> ( ( ppi ` K ) x. ( log ` ( 2 x. N ) ) ) <_ ( ( ppi ` ( 2 x. N ) ) x. ( log ` ( 2 x. N ) ) ) ) ) |
| 183 |
164 182
|
mpbid |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( ppi ` K ) x. ( log ` ( 2 x. N ) ) ) <_ ( ( ppi ` ( 2 x. N ) ) x. ( log ` ( 2 x. N ) ) ) ) |
| 184 |
17 42 31 159 183
|
letrd |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( ( 2 x. N ) _C N ) ) <_ ( ( ppi ` ( 2 x. N ) ) x. ( log ` ( 2 x. N ) ) ) ) |
| 185 |
11 17 31 35 184
|
ltletrd |
|- ( N e. ( ZZ>= ` 4 ) -> ( log ` ( ( 4 ^ N ) / N ) ) < ( ( ppi ` ( 2 x. N ) ) x. ( log ` ( 2 x. N ) ) ) ) |