| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coeeu.1 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 2 |
|
coeeu.2 |
|- ( ph -> A e. ( CC ^m NN0 ) ) |
| 3 |
|
coeeu.3 |
|- ( ph -> B e. ( CC ^m NN0 ) ) |
| 4 |
|
coeeu.4 |
|- ( ph -> M e. NN0 ) |
| 5 |
|
coeeu.5 |
|- ( ph -> N e. NN0 ) |
| 6 |
|
coeeu.6 |
|- ( ph -> ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) |
| 7 |
|
coeeu.7 |
|- ( ph -> ( B " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) |
| 8 |
|
coeeu.8 |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
| 9 |
|
coeeu.9 |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 10 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 11 |
4 5
|
nn0addcld |
|- ( ph -> ( M + N ) e. NN0 ) |
| 12 |
|
subcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x - y ) e. CC ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x - y ) e. CC ) |
| 14 |
|
cnex |
|- CC e. _V |
| 15 |
|
nn0ex |
|- NN0 e. _V |
| 16 |
14 15
|
elmap |
|- ( A e. ( CC ^m NN0 ) <-> A : NN0 --> CC ) |
| 17 |
2 16
|
sylib |
|- ( ph -> A : NN0 --> CC ) |
| 18 |
14 15
|
elmap |
|- ( B e. ( CC ^m NN0 ) <-> B : NN0 --> CC ) |
| 19 |
3 18
|
sylib |
|- ( ph -> B : NN0 --> CC ) |
| 20 |
15
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 21 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
| 22 |
13 17 19 20 20 21
|
off |
|- ( ph -> ( A oF - B ) : NN0 --> CC ) |
| 23 |
14 15
|
elmap |
|- ( ( A oF - B ) e. ( CC ^m NN0 ) <-> ( A oF - B ) : NN0 --> CC ) |
| 24 |
22 23
|
sylibr |
|- ( ph -> ( A oF - B ) e. ( CC ^m NN0 ) ) |
| 25 |
|
0cn |
|- 0 e. CC |
| 26 |
|
snssi |
|- ( 0 e. CC -> { 0 } C_ CC ) |
| 27 |
25 26
|
ax-mp |
|- { 0 } C_ CC |
| 28 |
|
ssequn2 |
|- ( { 0 } C_ CC <-> ( CC u. { 0 } ) = CC ) |
| 29 |
27 28
|
mpbi |
|- ( CC u. { 0 } ) = CC |
| 30 |
29
|
oveq1i |
|- ( ( CC u. { 0 } ) ^m NN0 ) = ( CC ^m NN0 ) |
| 31 |
24 30
|
eleqtrrdi |
|- ( ph -> ( A oF - B ) e. ( ( CC u. { 0 } ) ^m NN0 ) ) |
| 32 |
11
|
nn0red |
|- ( ph -> ( M + N ) e. RR ) |
| 33 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 34 |
|
ltnle |
|- ( ( ( M + N ) e. RR /\ k e. RR ) -> ( ( M + N ) < k <-> -. k <_ ( M + N ) ) ) |
| 35 |
32 33 34
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( ( M + N ) < k <-> -. k <_ ( M + N ) ) ) |
| 36 |
17
|
ffnd |
|- ( ph -> A Fn NN0 ) |
| 37 |
19
|
ffnd |
|- ( ph -> B Fn NN0 ) |
| 38 |
|
eqidd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) = ( A ` k ) ) |
| 39 |
|
eqidd |
|- ( ( ph /\ k e. NN0 ) -> ( B ` k ) = ( B ` k ) ) |
| 40 |
36 37 20 20 21 38 39
|
ofval |
|- ( ( ph /\ k e. NN0 ) -> ( ( A oF - B ) ` k ) = ( ( A ` k ) - ( B ` k ) ) ) |
| 41 |
40
|
adantrr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A oF - B ) ` k ) = ( ( A ` k ) - ( B ` k ) ) ) |
| 42 |
4
|
nn0red |
|- ( ph -> M e. RR ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> M e. RR ) |
| 44 |
32
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( M + N ) e. RR ) |
| 45 |
33
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> k e. RR ) |
| 46 |
45
|
adantrr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> k e. RR ) |
| 47 |
4
|
nn0cnd |
|- ( ph -> M e. CC ) |
| 48 |
5
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 49 |
47 48
|
addcomd |
|- ( ph -> ( M + N ) = ( N + M ) ) |
| 50 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 51 |
5 50
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 52 |
4
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 53 |
|
eluzadd |
|- ( ( N e. ( ZZ>= ` 0 ) /\ M e. ZZ ) -> ( N + M ) e. ( ZZ>= ` ( 0 + M ) ) ) |
| 54 |
51 52 53
|
syl2anc |
|- ( ph -> ( N + M ) e. ( ZZ>= ` ( 0 + M ) ) ) |
| 55 |
49 54
|
eqeltrd |
|- ( ph -> ( M + N ) e. ( ZZ>= ` ( 0 + M ) ) ) |
| 56 |
47
|
addlidd |
|- ( ph -> ( 0 + M ) = M ) |
| 57 |
56
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` M ) ) |
| 58 |
55 57
|
eleqtrd |
|- ( ph -> ( M + N ) e. ( ZZ>= ` M ) ) |
| 59 |
|
eluzle |
|- ( ( M + N ) e. ( ZZ>= ` M ) -> M <_ ( M + N ) ) |
| 60 |
58 59
|
syl |
|- ( ph -> M <_ ( M + N ) ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> M <_ ( M + N ) ) |
| 62 |
|
simprr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( M + N ) < k ) |
| 63 |
43 44 46 61 62
|
lelttrd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> M < k ) |
| 64 |
43 46
|
ltnled |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( M < k <-> -. k <_ M ) ) |
| 65 |
63 64
|
mpbid |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> -. k <_ M ) |
| 66 |
|
plyco0 |
|- ( ( M e. NN0 /\ A : NN0 --> CC ) -> ( ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ M ) ) ) |
| 67 |
4 17 66
|
syl2anc |
|- ( ph -> ( ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ M ) ) ) |
| 68 |
6 67
|
mpbid |
|- ( ph -> A. k e. NN0 ( ( A ` k ) =/= 0 -> k <_ M ) ) |
| 69 |
68
|
r19.21bi |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ M ) ) |
| 70 |
69
|
adantrr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A ` k ) =/= 0 -> k <_ M ) ) |
| 71 |
70
|
necon1bd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( -. k <_ M -> ( A ` k ) = 0 ) ) |
| 72 |
65 71
|
mpd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( A ` k ) = 0 ) |
| 73 |
5
|
nn0red |
|- ( ph -> N e. RR ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> N e. RR ) |
| 75 |
4 50
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 76 |
5
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 77 |
|
eluzadd |
|- ( ( M e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( M + N ) e. ( ZZ>= ` ( 0 + N ) ) ) |
| 78 |
75 76 77
|
syl2anc |
|- ( ph -> ( M + N ) e. ( ZZ>= ` ( 0 + N ) ) ) |
| 79 |
48
|
addlidd |
|- ( ph -> ( 0 + N ) = N ) |
| 80 |
79
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( 0 + N ) ) = ( ZZ>= ` N ) ) |
| 81 |
78 80
|
eleqtrd |
|- ( ph -> ( M + N ) e. ( ZZ>= ` N ) ) |
| 82 |
|
eluzle |
|- ( ( M + N ) e. ( ZZ>= ` N ) -> N <_ ( M + N ) ) |
| 83 |
81 82
|
syl |
|- ( ph -> N <_ ( M + N ) ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> N <_ ( M + N ) ) |
| 85 |
74 44 46 84 62
|
lelttrd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> N < k ) |
| 86 |
74 46
|
ltnled |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( N < k <-> -. k <_ N ) ) |
| 87 |
85 86
|
mpbid |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> -. k <_ N ) |
| 88 |
|
plyco0 |
|- ( ( N e. NN0 /\ B : NN0 --> CC ) -> ( ( B " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( B ` k ) =/= 0 -> k <_ N ) ) ) |
| 89 |
5 19 88
|
syl2anc |
|- ( ph -> ( ( B " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( B ` k ) =/= 0 -> k <_ N ) ) ) |
| 90 |
7 89
|
mpbid |
|- ( ph -> A. k e. NN0 ( ( B ` k ) =/= 0 -> k <_ N ) ) |
| 91 |
90
|
r19.21bi |
|- ( ( ph /\ k e. NN0 ) -> ( ( B ` k ) =/= 0 -> k <_ N ) ) |
| 92 |
91
|
adantrr |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( B ` k ) =/= 0 -> k <_ N ) ) |
| 93 |
92
|
necon1bd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( -. k <_ N -> ( B ` k ) = 0 ) ) |
| 94 |
87 93
|
mpd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( B ` k ) = 0 ) |
| 95 |
72 94
|
oveq12d |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A ` k ) - ( B ` k ) ) = ( 0 - 0 ) ) |
| 96 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 97 |
95 96
|
eqtrdi |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A ` k ) - ( B ` k ) ) = 0 ) |
| 98 |
41 97
|
eqtrd |
|- ( ( ph /\ ( k e. NN0 /\ ( M + N ) < k ) ) -> ( ( A oF - B ) ` k ) = 0 ) |
| 99 |
98
|
expr |
|- ( ( ph /\ k e. NN0 ) -> ( ( M + N ) < k -> ( ( A oF - B ) ` k ) = 0 ) ) |
| 100 |
35 99
|
sylbird |
|- ( ( ph /\ k e. NN0 ) -> ( -. k <_ ( M + N ) -> ( ( A oF - B ) ` k ) = 0 ) ) |
| 101 |
100
|
necon1ad |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) |
| 102 |
101
|
ralrimiva |
|- ( ph -> A. k e. NN0 ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) |
| 103 |
|
plyco0 |
|- ( ( ( M + N ) e. NN0 /\ ( A oF - B ) : NN0 --> CC ) -> ( ( ( A oF - B ) " ( ZZ>= ` ( ( M + N ) + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) ) |
| 104 |
11 22 103
|
syl2anc |
|- ( ph -> ( ( ( A oF - B ) " ( ZZ>= ` ( ( M + N ) + 1 ) ) ) = { 0 } <-> A. k e. NN0 ( ( ( A oF - B ) ` k ) =/= 0 -> k <_ ( M + N ) ) ) ) |
| 105 |
102 104
|
mpbird |
|- ( ph -> ( ( A oF - B ) " ( ZZ>= ` ( ( M + N ) + 1 ) ) ) = { 0 } ) |
| 106 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 107 |
|
fconstmpt |
|- ( CC X. { 0 } ) = ( z e. CC |-> 0 ) |
| 108 |
106 107
|
eqtri |
|- 0p = ( z e. CC |-> 0 ) |
| 109 |
|
elfznn0 |
|- ( k e. ( 0 ... ( M + N ) ) -> k e. NN0 ) |
| 110 |
40
|
adantlr |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A oF - B ) ` k ) = ( ( A ` k ) - ( B ` k ) ) ) |
| 111 |
110
|
oveq1d |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = ( ( ( A ` k ) - ( B ` k ) ) x. ( z ^ k ) ) ) |
| 112 |
17
|
adantr |
|- ( ( ph /\ z e. CC ) -> A : NN0 --> CC ) |
| 113 |
112
|
ffvelcdmda |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 114 |
19
|
adantr |
|- ( ( ph /\ z e. CC ) -> B : NN0 --> CC ) |
| 115 |
114
|
ffvelcdmda |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( B ` k ) e. CC ) |
| 116 |
|
expcl |
|- ( ( z e. CC /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
| 117 |
116
|
adantll |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
| 118 |
113 115 117
|
subdird |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( A ` k ) - ( B ` k ) ) x. ( z ^ k ) ) = ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 119 |
111 118
|
eqtrd |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 120 |
109 119
|
sylan2 |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( M + N ) ) ) -> ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 121 |
120
|
sumeq2dv |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 122 |
|
fzfid |
|- ( ( ph /\ z e. CC ) -> ( 0 ... ( M + N ) ) e. Fin ) |
| 123 |
113 117
|
mulcld |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) |
| 124 |
109 123
|
sylan2 |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( M + N ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) |
| 125 |
115 117
|
mulcld |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( B ` k ) x. ( z ^ k ) ) e. CC ) |
| 126 |
109 125
|
sylan2 |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( M + N ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) e. CC ) |
| 127 |
122 124 126
|
fsumsub |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A ` k ) x. ( z ^ k ) ) - ( ( B ` k ) x. ( z ^ k ) ) ) = ( sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) - sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 128 |
122 124
|
fsumcl |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) e. CC ) |
| 129 |
8 9
|
eqtr3d |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 130 |
129
|
fveq1d |
|- ( ph -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) ) |
| 131 |
130
|
adantr |
|- ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) ) |
| 132 |
|
simpr |
|- ( ( ph /\ z e. CC ) -> z e. CC ) |
| 133 |
|
sumex |
|- sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) e. _V |
| 134 |
|
eqid |
|- ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 135 |
134
|
fvmpt2 |
|- ( ( z e. CC /\ sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) e. _V ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 136 |
132 133 135
|
sylancl |
|- ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 137 |
|
fzss2 |
|- ( ( M + N ) e. ( ZZ>= ` M ) -> ( 0 ... M ) C_ ( 0 ... ( M + N ) ) ) |
| 138 |
58 137
|
syl |
|- ( ph -> ( 0 ... M ) C_ ( 0 ... ( M + N ) ) ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ z e. CC ) -> ( 0 ... M ) C_ ( 0 ... ( M + N ) ) ) |
| 140 |
139
|
sselda |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... M ) ) -> k e. ( 0 ... ( M + N ) ) ) |
| 141 |
140 124
|
syldan |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... M ) ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) |
| 142 |
|
eldifn |
|- ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) -> -. k e. ( 0 ... M ) ) |
| 143 |
142
|
adantl |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> -. k e. ( 0 ... M ) ) |
| 144 |
|
eldifi |
|- ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) -> k e. ( 0 ... ( M + N ) ) ) |
| 145 |
144 109
|
syl |
|- ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) -> k e. NN0 ) |
| 146 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 147 |
146 50
|
eleqtrdi |
|- ( ( ph /\ k e. NN0 ) -> k e. ( ZZ>= ` 0 ) ) |
| 148 |
52
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> M e. ZZ ) |
| 149 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ M e. ZZ ) -> ( k e. ( 0 ... M ) <-> k <_ M ) ) |
| 150 |
147 148 149
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( k e. ( 0 ... M ) <-> k <_ M ) ) |
| 151 |
69 150
|
sylibrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... M ) ) ) |
| 152 |
151
|
adantlr |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... M ) ) ) |
| 153 |
152
|
necon1bd |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( -. k e. ( 0 ... M ) -> ( A ` k ) = 0 ) ) |
| 154 |
145 153
|
sylan2 |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( -. k e. ( 0 ... M ) -> ( A ` k ) = 0 ) ) |
| 155 |
143 154
|
mpd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( A ` k ) = 0 ) |
| 156 |
155
|
oveq1d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) |
| 157 |
132 145 116
|
syl2an |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( z ^ k ) e. CC ) |
| 158 |
157
|
mul02d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) |
| 159 |
156 158
|
eqtrd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... M ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = 0 ) |
| 160 |
139 141 159 122
|
fsumss |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 161 |
136 160
|
eqtrd |
|- ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 162 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) e. _V |
| 163 |
|
eqid |
|- ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) |
| 164 |
163
|
fvmpt2 |
|- ( ( z e. CC /\ sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) e. _V ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) |
| 165 |
132 162 164
|
sylancl |
|- ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) |
| 166 |
|
fzss2 |
|- ( ( M + N ) e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... ( M + N ) ) ) |
| 167 |
81 166
|
syl |
|- ( ph -> ( 0 ... N ) C_ ( 0 ... ( M + N ) ) ) |
| 168 |
167
|
adantr |
|- ( ( ph /\ z e. CC ) -> ( 0 ... N ) C_ ( 0 ... ( M + N ) ) ) |
| 169 |
168
|
sselda |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... ( M + N ) ) ) |
| 170 |
169 126
|
syldan |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( B ` k ) x. ( z ^ k ) ) e. CC ) |
| 171 |
|
eldifn |
|- ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) |
| 172 |
171
|
adantl |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) |
| 173 |
|
eldifi |
|- ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) -> k e. ( 0 ... ( M + N ) ) ) |
| 174 |
173 109
|
syl |
|- ( k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) -> k e. NN0 ) |
| 175 |
76
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> N e. ZZ ) |
| 176 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
| 177 |
147 175 176
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
| 178 |
91 177
|
sylibrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( B ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) |
| 179 |
178
|
adantlr |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( B ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) |
| 180 |
179
|
necon1bd |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( -. k e. ( 0 ... N ) -> ( B ` k ) = 0 ) ) |
| 181 |
174 180
|
sylan2 |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( -. k e. ( 0 ... N ) -> ( B ` k ) = 0 ) ) |
| 182 |
172 181
|
mpd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( B ` k ) = 0 ) |
| 183 |
182
|
oveq1d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) |
| 184 |
132 174 116
|
syl2an |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( z ^ k ) e. CC ) |
| 185 |
184
|
mul02d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) |
| 186 |
183 185
|
eqtrd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... ( M + N ) ) \ ( 0 ... N ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) = 0 ) |
| 187 |
168 170 186 122
|
fsumss |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) |
| 188 |
165 187
|
eqtrd |
|- ( ( ph /\ z e. CC ) -> ( ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( B ` k ) x. ( z ^ k ) ) ) ` z ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) |
| 189 |
131 161 188
|
3eqtr3d |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) |
| 190 |
128 189
|
subeq0bd |
|- ( ( ph /\ z e. CC ) -> ( sum_ k e. ( 0 ... ( M + N ) ) ( ( A ` k ) x. ( z ^ k ) ) - sum_ k e. ( 0 ... ( M + N ) ) ( ( B ` k ) x. ( z ^ k ) ) ) = 0 ) |
| 191 |
121 127 190
|
3eqtrrd |
|- ( ( ph /\ z e. CC ) -> 0 = sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) ) |
| 192 |
191
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> 0 ) = ( z e. CC |-> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) ) ) |
| 193 |
108 192
|
eqtrid |
|- ( ph -> 0p = ( z e. CC |-> sum_ k e. ( 0 ... ( M + N ) ) ( ( ( A oF - B ) ` k ) x. ( z ^ k ) ) ) ) |
| 194 |
10 11 31 105 193
|
plyeq0 |
|- ( ph -> ( A oF - B ) = ( NN0 X. { 0 } ) ) |
| 195 |
|
ofsubeq0 |
|- ( ( NN0 e. _V /\ A : NN0 --> CC /\ B : NN0 --> CC ) -> ( ( A oF - B ) = ( NN0 X. { 0 } ) <-> A = B ) ) |
| 196 |
15 17 19 195
|
mp3an2i |
|- ( ph -> ( ( A oF - B ) = ( NN0 X. { 0 } ) <-> A = B ) ) |
| 197 |
194 196
|
mpbid |
|- ( ph -> A = B ) |