| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem61.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem61.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem61.altb |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem61.f |
|- ( ph -> F : ( A (,) B ) --> RR ) |
| 5 |
|
fourierdlem61.y |
|- ( ph -> Y e. ( F limCC A ) ) |
| 6 |
|
fourierdlem61.g |
|- G = ( RR _D F ) |
| 7 |
|
fourierdlem61.domg |
|- ( ph -> dom G = ( A (,) B ) ) |
| 8 |
|
fourierdlem61.e |
|- ( ph -> E e. ( G limCC A ) ) |
| 9 |
|
fourierdlem61.h |
|- H = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( ( F ` ( A + s ) ) - Y ) / s ) ) |
| 10 |
|
fourierdlem61.n |
|- N = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) |
| 11 |
|
fourierdlem61.d |
|- D = ( s e. ( 0 (,) ( B - A ) ) |-> s ) |
| 12 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 13 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 14 |
13
|
rexrd |
|- ( ph -> ( B - A ) e. RR* ) |
| 15 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 16 |
3 15
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> F : ( A (,) B ) --> RR ) |
| 18 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> A e. RR* ) |
| 20 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> B e. RR* ) |
| 22 |
1
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> A e. RR ) |
| 23 |
|
elioore |
|- ( s e. ( 0 (,) ( B - A ) ) -> s e. RR ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> s e. RR ) |
| 25 |
22 24
|
readdcld |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + s ) e. RR ) |
| 26 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 27 |
26
|
addridd |
|- ( ph -> ( A + 0 ) = A ) |
| 28 |
27
|
eqcomd |
|- ( ph -> A = ( A + 0 ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> A = ( A + 0 ) ) |
| 30 |
|
0red |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> 0 e. RR ) |
| 31 |
|
0xr |
|- 0 e. RR* |
| 32 |
31
|
a1i |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> 0 e. RR* ) |
| 33 |
14
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( B - A ) e. RR* ) |
| 34 |
|
simpr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> s e. ( 0 (,) ( B - A ) ) ) |
| 35 |
32 33 34
|
ioogtlbd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> 0 < s ) |
| 36 |
30 24 22 35
|
ltadd2dd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + 0 ) < ( A + s ) ) |
| 37 |
29 36
|
eqbrtrd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> A < ( A + s ) ) |
| 38 |
13
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( B - A ) e. RR ) |
| 39 |
32 33 34
|
iooltubd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> s < ( B - A ) ) |
| 40 |
24 38 22 39
|
ltadd2dd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + s ) < ( A + ( B - A ) ) ) |
| 41 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 42 |
26 41
|
pncan3d |
|- ( ph -> ( A + ( B - A ) ) = B ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + ( B - A ) ) = B ) |
| 44 |
40 43
|
breqtrd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + s ) < B ) |
| 45 |
19 21 25 37 44
|
eliood |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + s ) e. ( A (,) B ) ) |
| 46 |
17 45
|
ffvelcdmd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( F ` ( A + s ) ) e. RR ) |
| 47 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 48 |
47
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 49 |
|
ax-resscn |
|- RR C_ CC |
| 50 |
48 49
|
sstrdi |
|- ( ph -> ( A (,) B ) C_ CC ) |
| 51 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 52 |
51 20 1 3
|
lptioo1cn |
|- ( ph -> A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
| 53 |
4 50 52 5
|
limcrecl |
|- ( ph -> Y e. RR ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> Y e. RR ) |
| 55 |
46 54
|
resubcld |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( F ` ( A + s ) ) - Y ) e. RR ) |
| 56 |
55 10
|
fmptd |
|- ( ph -> N : ( 0 (,) ( B - A ) ) --> RR ) |
| 57 |
24 11
|
fmptd |
|- ( ph -> D : ( 0 (,) ( B - A ) ) --> RR ) |
| 58 |
10
|
oveq2i |
|- ( RR _D N ) = ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) ) |
| 59 |
58
|
a1i |
|- ( ph -> ( RR _D N ) = ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) ) ) |
| 60 |
59
|
dmeqd |
|- ( ph -> dom ( RR _D N ) = dom ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) ) ) |
| 61 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 62 |
61
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 63 |
46
|
recnd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( F ` ( A + s ) ) e. CC ) |
| 64 |
|
dvfre |
|- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 65 |
4 48 64
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 66 |
6
|
a1i |
|- ( ph -> G = ( RR _D F ) ) |
| 67 |
66
|
feq1d |
|- ( ph -> ( G : dom ( RR _D F ) --> RR <-> ( RR _D F ) : dom ( RR _D F ) --> RR ) ) |
| 68 |
65 67
|
mpbird |
|- ( ph -> G : dom ( RR _D F ) --> RR ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> G : dom ( RR _D F ) --> RR ) |
| 70 |
66
|
eqcomd |
|- ( ph -> ( RR _D F ) = G ) |
| 71 |
70
|
dmeqd |
|- ( ph -> dom ( RR _D F ) = dom G ) |
| 72 |
71 7
|
eqtr2d |
|- ( ph -> ( A (,) B ) = dom ( RR _D F ) ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A (,) B ) = dom ( RR _D F ) ) |
| 74 |
45 73
|
eleqtrd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + s ) e. dom ( RR _D F ) ) |
| 75 |
69 74
|
ffvelcdmd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( G ` ( A + s ) ) e. RR ) |
| 76 |
|
1red |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> 1 e. RR ) |
| 77 |
4
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. RR ) |
| 78 |
77
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
| 79 |
72
|
feq2d |
|- ( ph -> ( G : ( A (,) B ) --> RR <-> G : dom ( RR _D F ) --> RR ) ) |
| 80 |
68 79
|
mpbird |
|- ( ph -> G : ( A (,) B ) --> RR ) |
| 81 |
80
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) e. RR ) |
| 82 |
26
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> A e. CC ) |
| 83 |
26
|
adantr |
|- ( ( ph /\ s e. RR ) -> A e. CC ) |
| 84 |
|
0red |
|- ( ( ph /\ s e. RR ) -> 0 e. RR ) |
| 85 |
62 26
|
dvmptc |
|- ( ph -> ( RR _D ( s e. RR |-> A ) ) = ( s e. RR |-> 0 ) ) |
| 86 |
|
ioossre |
|- ( 0 (,) ( B - A ) ) C_ RR |
| 87 |
86
|
a1i |
|- ( ph -> ( 0 (,) ( B - A ) ) C_ RR ) |
| 88 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 89 |
|
iooretop |
|- ( 0 (,) ( B - A ) ) e. ( topGen ` ran (,) ) |
| 90 |
89
|
a1i |
|- ( ph -> ( 0 (,) ( B - A ) ) e. ( topGen ` ran (,) ) ) |
| 91 |
62 83 84 85 87 88 51 90
|
dvmptres |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> A ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> 0 ) ) |
| 92 |
24
|
recnd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> s e. CC ) |
| 93 |
|
recn |
|- ( s e. RR -> s e. CC ) |
| 94 |
93
|
adantl |
|- ( ( ph /\ s e. RR ) -> s e. CC ) |
| 95 |
|
1red |
|- ( ( ph /\ s e. RR ) -> 1 e. RR ) |
| 96 |
62
|
dvmptid |
|- ( ph -> ( RR _D ( s e. RR |-> s ) ) = ( s e. RR |-> 1 ) ) |
| 97 |
62 94 95 96 87 88 51 90
|
dvmptres |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> s ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ) |
| 98 |
62 82 30 91 92 76 97
|
dvmptadd |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( A + s ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( 0 + 1 ) ) ) |
| 99 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 100 |
99
|
mpteq2i |
|- ( s e. ( 0 (,) ( B - A ) ) |-> ( 0 + 1 ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) |
| 101 |
98 100
|
eqtrdi |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( A + s ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ) |
| 102 |
4
|
feqmptd |
|- ( ph -> F = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
| 103 |
102
|
eqcomd |
|- ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) = F ) |
| 104 |
103
|
oveq2d |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) = ( RR _D F ) ) |
| 105 |
80
|
feqmptd |
|- ( ph -> G = ( x e. ( A (,) B ) |-> ( G ` x ) ) ) |
| 106 |
104 70 105
|
3eqtrd |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( F ` x ) ) ) = ( x e. ( A (,) B ) |-> ( G ` x ) ) ) |
| 107 |
|
fveq2 |
|- ( x = ( A + s ) -> ( F ` x ) = ( F ` ( A + s ) ) ) |
| 108 |
|
fveq2 |
|- ( x = ( A + s ) -> ( G ` x ) = ( G ` ( A + s ) ) ) |
| 109 |
62 62 45 76 78 81 101 106 107 108
|
dvmptco |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( F ` ( A + s ) ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( G ` ( A + s ) ) x. 1 ) ) ) |
| 110 |
75
|
recnd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( G ` ( A + s ) ) e. CC ) |
| 111 |
110
|
mulridd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( G ` ( A + s ) ) x. 1 ) = ( G ` ( A + s ) ) ) |
| 112 |
111
|
mpteq2dva |
|- ( ph -> ( s e. ( 0 (,) ( B - A ) ) |-> ( ( G ` ( A + s ) ) x. 1 ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 113 |
109 112
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( F ` ( A + s ) ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 114 |
|
limccl |
|- ( F limCC A ) C_ CC |
| 115 |
114 5
|
sselid |
|- ( ph -> Y e. CC ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> Y e. CC ) |
| 117 |
115
|
adantr |
|- ( ( ph /\ s e. RR ) -> Y e. CC ) |
| 118 |
62 115
|
dvmptc |
|- ( ph -> ( RR _D ( s e. RR |-> Y ) ) = ( s e. RR |-> 0 ) ) |
| 119 |
62 117 84 118 87 88 51 90
|
dvmptres |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> Y ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> 0 ) ) |
| 120 |
62 63 75 113 116 30 119
|
dvmptsub |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( G ` ( A + s ) ) - 0 ) ) ) |
| 121 |
110
|
subid1d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( G ` ( A + s ) ) - 0 ) = ( G ` ( A + s ) ) ) |
| 122 |
121
|
mpteq2dva |
|- ( ph -> ( s e. ( 0 (,) ( B - A ) ) |-> ( ( G ` ( A + s ) ) - 0 ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 123 |
120 122
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 124 |
123
|
dmeqd |
|- ( ph -> dom ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) ) = dom ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 125 |
75
|
ralrimiva |
|- ( ph -> A. s e. ( 0 (,) ( B - A ) ) ( G ` ( A + s ) ) e. RR ) |
| 126 |
|
dmmptg |
|- ( A. s e. ( 0 (,) ( B - A ) ) ( G ` ( A + s ) ) e. RR -> dom ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) = ( 0 (,) ( B - A ) ) ) |
| 127 |
125 126
|
syl |
|- ( ph -> dom ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) = ( 0 (,) ( B - A ) ) ) |
| 128 |
60 124 127
|
3eqtrd |
|- ( ph -> dom ( RR _D N ) = ( 0 (,) ( B - A ) ) ) |
| 129 |
11
|
a1i |
|- ( ph -> D = ( s e. ( 0 (,) ( B - A ) ) |-> s ) ) |
| 130 |
129
|
oveq2d |
|- ( ph -> ( RR _D D ) = ( RR _D ( s e. ( 0 (,) ( B - A ) ) |-> s ) ) ) |
| 131 |
130 97
|
eqtrd |
|- ( ph -> ( RR _D D ) = ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ) |
| 132 |
131
|
dmeqd |
|- ( ph -> dom ( RR _D D ) = dom ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ) |
| 133 |
76
|
ralrimiva |
|- ( ph -> A. s e. ( 0 (,) ( B - A ) ) 1 e. RR ) |
| 134 |
|
dmmptg |
|- ( A. s e. ( 0 (,) ( B - A ) ) 1 e. RR -> dom ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) = ( 0 (,) ( B - A ) ) ) |
| 135 |
133 134
|
syl |
|- ( ph -> dom ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) = ( 0 (,) ( B - A ) ) ) |
| 136 |
132 135
|
eqtrd |
|- ( ph -> dom ( RR _D D ) = ( 0 (,) ( B - A ) ) ) |
| 137 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> ( F ` ( A + s ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( F ` ( A + s ) ) ) |
| 138 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> Y ) = ( s e. ( 0 (,) ( B - A ) ) |-> Y ) |
| 139 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) |
| 140 |
45
|
adantrr |
|- ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) =/= A ) ) -> ( A + s ) e. ( A (,) B ) ) |
| 141 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> A ) = ( s e. ( 0 (,) ( B - A ) ) |-> A ) |
| 142 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> s ) = ( s e. ( 0 (,) ( B - A ) ) |-> s ) |
| 143 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> ( A + s ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( A + s ) ) |
| 144 |
87 49
|
sstrdi |
|- ( ph -> ( 0 (,) ( B - A ) ) C_ CC ) |
| 145 |
12
|
recnd |
|- ( ph -> 0 e. CC ) |
| 146 |
141 144 26 145
|
constlimc |
|- ( ph -> A e. ( ( s e. ( 0 (,) ( B - A ) ) |-> A ) limCC 0 ) ) |
| 147 |
144 142 145
|
idlimc |
|- ( ph -> 0 e. ( ( s e. ( 0 (,) ( B - A ) ) |-> s ) limCC 0 ) ) |
| 148 |
141 142 143 82 92 146 147
|
addlimc |
|- ( ph -> ( A + 0 ) e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( A + s ) ) limCC 0 ) ) |
| 149 |
28 148
|
eqeltrd |
|- ( ph -> A e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( A + s ) ) limCC 0 ) ) |
| 150 |
102
|
oveq1d |
|- ( ph -> ( F limCC A ) = ( ( x e. ( A (,) B ) |-> ( F ` x ) ) limCC A ) ) |
| 151 |
5 150
|
eleqtrd |
|- ( ph -> Y e. ( ( x e. ( A (,) B ) |-> ( F ` x ) ) limCC A ) ) |
| 152 |
|
simplrr |
|- ( ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) /\ -. ( F ` ( A + s ) ) = Y ) -> ( A + s ) = A ) |
| 153 |
22 37
|
gtned |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( A + s ) =/= A ) |
| 154 |
153
|
neneqd |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> -. ( A + s ) = A ) |
| 155 |
154
|
adantrr |
|- ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) -> -. ( A + s ) = A ) |
| 156 |
155
|
adantr |
|- ( ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) /\ -. ( F ` ( A + s ) ) = Y ) -> -. ( A + s ) = A ) |
| 157 |
152 156
|
condan |
|- ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) -> ( F ` ( A + s ) ) = Y ) |
| 158 |
140 78 149 151 107 157
|
limcco |
|- ( ph -> Y e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( F ` ( A + s ) ) ) limCC 0 ) ) |
| 159 |
138 144 115 145
|
constlimc |
|- ( ph -> Y e. ( ( s e. ( 0 (,) ( B - A ) ) |-> Y ) limCC 0 ) ) |
| 160 |
137 138 139 63 116 158 159
|
sublimc |
|- ( ph -> ( Y - Y ) e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) limCC 0 ) ) |
| 161 |
115
|
subidd |
|- ( ph -> ( Y - Y ) = 0 ) |
| 162 |
10
|
eqcomi |
|- ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) = N |
| 163 |
162
|
oveq1i |
|- ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) limCC 0 ) = ( N limCC 0 ) |
| 164 |
163
|
a1i |
|- ( ph -> ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( F ` ( A + s ) ) - Y ) ) limCC 0 ) = ( N limCC 0 ) ) |
| 165 |
160 161 164
|
3eltr3d |
|- ( ph -> 0 e. ( N limCC 0 ) ) |
| 166 |
144 11 145
|
idlimc |
|- ( ph -> 0 e. ( D limCC 0 ) ) |
| 167 |
|
lbioo |
|- -. 0 e. ( 0 (,) ( B - A ) ) |
| 168 |
167
|
a1i |
|- ( ph -> -. 0 e. ( 0 (,) ( B - A ) ) ) |
| 169 |
|
mptresid |
|- ( _I |` ( 0 (,) ( B - A ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> s ) |
| 170 |
129 169
|
eqtr4di |
|- ( ph -> D = ( _I |` ( 0 (,) ( B - A ) ) ) ) |
| 171 |
170
|
rneqd |
|- ( ph -> ran D = ran ( _I |` ( 0 (,) ( B - A ) ) ) ) |
| 172 |
|
rnresi |
|- ran ( _I |` ( 0 (,) ( B - A ) ) ) = ( 0 (,) ( B - A ) ) |
| 173 |
171 172
|
eqtr2di |
|- ( ph -> ( 0 (,) ( B - A ) ) = ran D ) |
| 174 |
168 173
|
neleqtrd |
|- ( ph -> -. 0 e. ran D ) |
| 175 |
|
0ne1 |
|- 0 =/= 1 |
| 176 |
175
|
neii |
|- -. 0 = 1 |
| 177 |
|
elsng |
|- ( 0 e. RR -> ( 0 e. { 1 } <-> 0 = 1 ) ) |
| 178 |
12 177
|
syl |
|- ( ph -> ( 0 e. { 1 } <-> 0 = 1 ) ) |
| 179 |
176 178
|
mtbiri |
|- ( ph -> -. 0 e. { 1 } ) |
| 180 |
131
|
rneqd |
|- ( ph -> ran ( RR _D D ) = ran ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ) |
| 181 |
|
eqid |
|- ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) = ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) |
| 182 |
31
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 183 |
|
ioon0 |
|- ( ( 0 e. RR* /\ ( B - A ) e. RR* ) -> ( ( 0 (,) ( B - A ) ) =/= (/) <-> 0 < ( B - A ) ) ) |
| 184 |
182 14 183
|
syl2anc |
|- ( ph -> ( ( 0 (,) ( B - A ) ) =/= (/) <-> 0 < ( B - A ) ) ) |
| 185 |
16 184
|
mpbird |
|- ( ph -> ( 0 (,) ( B - A ) ) =/= (/) ) |
| 186 |
181 185
|
rnmptc |
|- ( ph -> ran ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) = { 1 } ) |
| 187 |
180 186
|
eqtr2d |
|- ( ph -> { 1 } = ran ( RR _D D ) ) |
| 188 |
179 187
|
neleqtrd |
|- ( ph -> -. 0 e. ran ( RR _D D ) ) |
| 189 |
81
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) e. CC ) |
| 190 |
105
|
oveq1d |
|- ( ph -> ( G limCC A ) = ( ( x e. ( A (,) B ) |-> ( G ` x ) ) limCC A ) ) |
| 191 |
8 190
|
eleqtrd |
|- ( ph -> E e. ( ( x e. ( A (,) B ) |-> ( G ` x ) ) limCC A ) ) |
| 192 |
|
simplrr |
|- ( ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) /\ -. ( G ` ( A + s ) ) = E ) -> ( A + s ) = A ) |
| 193 |
155
|
adantr |
|- ( ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) /\ -. ( G ` ( A + s ) ) = E ) -> -. ( A + s ) = A ) |
| 194 |
192 193
|
condan |
|- ( ( ph /\ ( s e. ( 0 (,) ( B - A ) ) /\ ( A + s ) = A ) ) -> ( G ` ( A + s ) ) = E ) |
| 195 |
140 189 149 191 108 194
|
limcco |
|- ( ph -> E e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) limCC 0 ) ) |
| 196 |
110
|
div1d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( G ` ( A + s ) ) / 1 ) = ( G ` ( A + s ) ) ) |
| 197 |
58 123
|
eqtrid |
|- ( ph -> ( RR _D N ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 198 |
197
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( RR _D N ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ) |
| 199 |
198
|
fveq1d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( RR _D N ) ` s ) = ( ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ` s ) ) |
| 200 |
|
fvmpt4 |
|- ( ( s e. ( 0 (,) ( B - A ) ) /\ ( G ` ( A + s ) ) e. RR ) -> ( ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ` s ) = ( G ` ( A + s ) ) ) |
| 201 |
34 75 200
|
syl2anc |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) ` s ) = ( G ` ( A + s ) ) ) |
| 202 |
199 201
|
eqtr2d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( G ` ( A + s ) ) = ( ( RR _D N ) ` s ) ) |
| 203 |
131
|
fveq1d |
|- ( ph -> ( ( RR _D D ) ` s ) = ( ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ` s ) ) |
| 204 |
203
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( RR _D D ) ` s ) = ( ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ` s ) ) |
| 205 |
|
fvmpt4 |
|- ( ( s e. ( 0 (,) ( B - A ) ) /\ 1 e. RR ) -> ( ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ` s ) = 1 ) |
| 206 |
34 76 205
|
syl2anc |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( s e. ( 0 (,) ( B - A ) ) |-> 1 ) ` s ) = 1 ) |
| 207 |
204 206
|
eqtr2d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> 1 = ( ( RR _D D ) ` s ) ) |
| 208 |
202 207
|
oveq12d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( G ` ( A + s ) ) / 1 ) = ( ( ( RR _D N ) ` s ) / ( ( RR _D D ) ` s ) ) ) |
| 209 |
196 208
|
eqtr3d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( G ` ( A + s ) ) = ( ( ( RR _D N ) ` s ) / ( ( RR _D D ) ` s ) ) ) |
| 210 |
209
|
mpteq2dva |
|- ( ph -> ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( ( RR _D N ) ` s ) / ( ( RR _D D ) ` s ) ) ) ) |
| 211 |
210
|
oveq1d |
|- ( ph -> ( ( s e. ( 0 (,) ( B - A ) ) |-> ( G ` ( A + s ) ) ) limCC 0 ) = ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( ( RR _D N ) ` s ) / ( ( RR _D D ) ` s ) ) ) limCC 0 ) ) |
| 212 |
195 211
|
eleqtrd |
|- ( ph -> E e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( ( RR _D N ) ` s ) / ( ( RR _D D ) ` s ) ) ) limCC 0 ) ) |
| 213 |
12 14 16 56 57 128 136 165 166 174 188 212
|
lhop1 |
|- ( ph -> E e. ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( N ` s ) / ( D ` s ) ) ) limCC 0 ) ) |
| 214 |
10
|
fvmpt2 |
|- ( ( s e. ( 0 (,) ( B - A ) ) /\ ( ( F ` ( A + s ) ) - Y ) e. RR ) -> ( N ` s ) = ( ( F ` ( A + s ) ) - Y ) ) |
| 215 |
34 55 214
|
syl2anc |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( N ` s ) = ( ( F ` ( A + s ) ) - Y ) ) |
| 216 |
11
|
fvmpt2 |
|- ( ( s e. ( 0 (,) ( B - A ) ) /\ s e. ( 0 (,) ( B - A ) ) ) -> ( D ` s ) = s ) |
| 217 |
34 34 216
|
syl2anc |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( D ` s ) = s ) |
| 218 |
215 217
|
oveq12d |
|- ( ( ph /\ s e. ( 0 (,) ( B - A ) ) ) -> ( ( N ` s ) / ( D ` s ) ) = ( ( ( F ` ( A + s ) ) - Y ) / s ) ) |
| 219 |
218
|
mpteq2dva |
|- ( ph -> ( s e. ( 0 (,) ( B - A ) ) |-> ( ( N ` s ) / ( D ` s ) ) ) = ( s e. ( 0 (,) ( B - A ) ) |-> ( ( ( F ` ( A + s ) ) - Y ) / s ) ) ) |
| 220 |
219 9
|
eqtr4di |
|- ( ph -> ( s e. ( 0 (,) ( B - A ) ) |-> ( ( N ` s ) / ( D ` s ) ) ) = H ) |
| 221 |
220
|
oveq1d |
|- ( ph -> ( ( s e. ( 0 (,) ( B - A ) ) |-> ( ( N ` s ) / ( D ` s ) ) ) limCC 0 ) = ( H limCC 0 ) ) |
| 222 |
213 221
|
eleqtrd |
|- ( ph -> E e. ( H limCC 0 ) ) |