Metamath Proof Explorer


Theorem fourierdlem72

Description: The derivative of O is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem72.f
|- ( ph -> F : RR --> RR )
fourierdlem72.xre
|- ( ph -> X e. RR )
fourierdlem72.p
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
fourierdlem72.m
|- ( ph -> M e. NN )
fourierdlem72.v
|- ( ph -> V e. ( P ` M ) )
fourierdlem72.dvcn
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) )
fourierdlem72.a
|- ( ph -> A e. RR )
fourierdlem72.b
|- ( ph -> B e. RR )
fourierdlem72.altb
|- ( ph -> A < B )
fourierdlem72.ab
|- ( ph -> ( A (,) B ) C_ ( -u _pi [,] _pi ) )
fourierdlem72.n0
|- ( ph -> -. 0 e. ( A [,] B ) )
fourierdlem72.c
|- ( ph -> C e. RR )
fourierdlem72.q
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) )
fourierdlem72.u
|- ( ph -> U e. ( 0 ..^ M ) )
fourierdlem72.abss
|- ( ph -> ( A (,) B ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) )
fourierdlem72.h
|- H = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) )
fourierdlem72.k
|- K = ( s e. ( A (,) B ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
fourierdlem72.o
|- O = ( s e. ( A (,) B ) |-> ( ( H ` s ) x. ( K ` s ) ) )
Assertion fourierdlem72
|- ( ph -> ( RR _D O ) e. ( ( A (,) B ) -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 fourierdlem72.f
 |-  ( ph -> F : RR --> RR )
2 fourierdlem72.xre
 |-  ( ph -> X e. RR )
3 fourierdlem72.p
 |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
4 fourierdlem72.m
 |-  ( ph -> M e. NN )
5 fourierdlem72.v
 |-  ( ph -> V e. ( P ` M ) )
6 fourierdlem72.dvcn
 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) )
7 fourierdlem72.a
 |-  ( ph -> A e. RR )
8 fourierdlem72.b
 |-  ( ph -> B e. RR )
9 fourierdlem72.altb
 |-  ( ph -> A < B )
10 fourierdlem72.ab
 |-  ( ph -> ( A (,) B ) C_ ( -u _pi [,] _pi ) )
11 fourierdlem72.n0
 |-  ( ph -> -. 0 e. ( A [,] B ) )
12 fourierdlem72.c
 |-  ( ph -> C e. RR )
13 fourierdlem72.q
 |-  Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) )
14 fourierdlem72.u
 |-  ( ph -> U e. ( 0 ..^ M ) )
15 fourierdlem72.abss
 |-  ( ph -> ( A (,) B ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) )
16 fourierdlem72.h
 |-  H = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) )
17 fourierdlem72.k
 |-  K = ( s e. ( A (,) B ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
18 fourierdlem72.o
 |-  O = ( s e. ( A (,) B ) |-> ( ( H ` s ) x. ( K ` s ) ) )
19 ovex
 |-  ( A (,) B ) e. _V
20 19 a1i
 |-  ( ph -> ( A (,) B ) e. _V )
21 1 adantr
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> F : RR --> RR )
22 2 adantr
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR )
23 elioore
 |-  ( s e. ( A (,) B ) -> s e. RR )
24 23 adantl
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR )
25 22 24 readdcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR )
26 21 25 ffvelrnd
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. RR )
27 12 adantr
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> C e. RR )
28 26 27 resubcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. RR )
29 ioossicc
 |-  ( A (,) B ) C_ ( A [,] B )
30 29 sseli
 |-  ( s e. ( A (,) B ) -> s e. ( A [,] B ) )
31 30 ad2antlr
 |-  ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> s e. ( A [,] B ) )
32 id
 |-  ( s =/= 0 -> s =/= 0 )
33 32 necon1bi
 |-  ( -. s =/= 0 -> s = 0 )
34 33 eleq1d
 |-  ( -. s =/= 0 -> ( s e. ( A [,] B ) <-> 0 e. ( A [,] B ) ) )
35 34 adantl
 |-  ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> ( s e. ( A [,] B ) <-> 0 e. ( A [,] B ) ) )
36 31 35 mpbid
 |-  ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> 0 e. ( A [,] B ) )
37 11 ad2antrr
 |-  ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> -. 0 e. ( A [,] B ) )
38 36 37 condan
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> s =/= 0 )
39 28 24 38 redivcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( F ` ( X + s ) ) - C ) / s ) e. RR )
40 39 16 fmptd
 |-  ( ph -> H : ( A (,) B ) --> RR )
41 40 ffvelrnda
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( H ` s ) e. RR )
42 2re
 |-  2 e. RR
43 42 a1i
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. RR )
44 24 rehalfcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. RR )
45 44 resincld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. RR )
46 43 45 remulcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR )
47 2cnd
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. CC )
48 24 recnd
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC )
49 48 halfcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. CC )
50 49 sincld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. CC )
51 2ne0
 |-  2 =/= 0
52 51 a1i
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> 2 =/= 0 )
53 10 sselda
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( -u _pi [,] _pi ) )
54 fourierdlem44
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 )
55 53 38 54 syl2anc
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) =/= 0 )
56 47 50 52 55 mulne0d
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 )
57 24 46 56 redivcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR )
58 57 17 fmptd
 |-  ( ph -> K : ( A (,) B ) --> RR )
59 58 ffvelrnda
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( K ` s ) e. RR )
60 40 feqmptd
 |-  ( ph -> H = ( s e. ( A (,) B ) |-> ( H ` s ) ) )
61 58 feqmptd
 |-  ( ph -> K = ( s e. ( A (,) B ) |-> ( K ` s ) ) )
62 20 41 59 60 61 offval2
 |-  ( ph -> ( H oF x. K ) = ( s e. ( A (,) B ) |-> ( ( H ` s ) x. ( K ` s ) ) ) )
63 18 62 eqtr4id
 |-  ( ph -> O = ( H oF x. K ) )
64 63 oveq2d
 |-  ( ph -> ( RR _D O ) = ( RR _D ( H oF x. K ) ) )
65 reelprrecn
 |-  RR e. { RR , CC }
66 65 a1i
 |-  ( ph -> RR e. { RR , CC } )
67 26 recnd
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. CC )
68 12 recnd
 |-  ( ph -> C e. CC )
69 68 adantr
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> C e. CC )
70 67 69 subcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC )
71 ioossre
 |-  ( A (,) B ) C_ RR
72 71 a1i
 |-  ( ph -> ( A (,) B ) C_ RR )
73 72 sselda
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR )
74 73 recnd
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC )
75 70 74 38 divcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( F ` ( X + s ) ) - C ) / s ) e. CC )
76 75 16 fmptd
 |-  ( ph -> H : ( A (,) B ) --> CC )
77 74 halfcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. CC )
78 77 sincld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. CC )
79 47 78 mulcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC )
80 74 79 56 divcld
 |-  ( ( ph /\ s e. ( A (,) B ) ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC )
81 80 17 fmptd
 |-  ( ph -> K : ( A (,) B ) --> CC )
82 ax-resscn
 |-  RR C_ CC
83 82 a1i
 |-  ( ph -> RR C_ CC )
84 ssid
 |-  CC C_ CC
85 84 a1i
 |-  ( ph -> CC C_ CC )
86 cncfss
 |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) )
87 83 85 86 syl2anc
 |-  ( ph -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) )
88 38 nelrdva
 |-  ( ph -> -. 0 e. ( A (,) B ) )
89 1 83 fssd
 |-  ( ph -> F : RR --> CC )
90 ssid
 |-  RR C_ RR
91 90 a1i
 |-  ( ph -> RR C_ RR )
92 ioossre
 |-  ( ( X + A ) (,) ( X + B ) ) C_ RR
93 92 a1i
 |-  ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ RR )
94 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
95 94 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
96 94 95 dvres
 |-  ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( X + A ) (,) ( X + B ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) ) )
97 83 89 91 93 96 syl22anc
 |-  ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) ) )
98 ioontr
 |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) = ( ( X + A ) (,) ( X + B ) )
99 98 reseq2i
 |-  ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) )
100 97 99 eqtrdi
 |-  ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) )
101 3 fourierdlem2
 |-  ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) )
102 4 101 syl
 |-  ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) )
103 5 102 mpbid
 |-  ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) )
104 103 simpld
 |-  ( ph -> V e. ( RR ^m ( 0 ... M ) ) )
105 elmapi
 |-  ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR )
106 104 105 syl
 |-  ( ph -> V : ( 0 ... M ) --> RR )
107 elfzofz
 |-  ( U e. ( 0 ..^ M ) -> U e. ( 0 ... M ) )
108 14 107 syl
 |-  ( ph -> U e. ( 0 ... M ) )
109 106 108 ffvelrnd
 |-  ( ph -> ( V ` U ) e. RR )
110 109 rexrd
 |-  ( ph -> ( V ` U ) e. RR* )
111 fzofzp1
 |-  ( U e. ( 0 ..^ M ) -> ( U + 1 ) e. ( 0 ... M ) )
112 14 111 syl
 |-  ( ph -> ( U + 1 ) e. ( 0 ... M ) )
113 106 112 ffvelrnd
 |-  ( ph -> ( V ` ( U + 1 ) ) e. RR )
114 113 rexrd
 |-  ( ph -> ( V ` ( U + 1 ) ) e. RR* )
115 pire
 |-  _pi e. RR
116 115 a1i
 |-  ( ph -> _pi e. RR )
117 116 renegcld
 |-  ( ph -> -u _pi e. RR )
118 117 116 2 3 4 5 108 13 fourierdlem13
 |-  ( ph -> ( ( Q ` U ) = ( ( V ` U ) - X ) /\ ( V ` U ) = ( X + ( Q ` U ) ) ) )
119 118 simprd
 |-  ( ph -> ( V ` U ) = ( X + ( Q ` U ) ) )
120 118 simpld
 |-  ( ph -> ( Q ` U ) = ( ( V ` U ) - X ) )
121 109 2 resubcld
 |-  ( ph -> ( ( V ` U ) - X ) e. RR )
122 120 121 eqeltrd
 |-  ( ph -> ( Q ` U ) e. RR )
123 117 116 2 3 4 5 112 13 fourierdlem13
 |-  ( ph -> ( ( Q ` ( U + 1 ) ) = ( ( V ` ( U + 1 ) ) - X ) /\ ( V ` ( U + 1 ) ) = ( X + ( Q ` ( U + 1 ) ) ) ) )
124 123 simpld
 |-  ( ph -> ( Q ` ( U + 1 ) ) = ( ( V ` ( U + 1 ) ) - X ) )
125 113 2 resubcld
 |-  ( ph -> ( ( V ` ( U + 1 ) ) - X ) e. RR )
126 124 125 eqeltrd
 |-  ( ph -> ( Q ` ( U + 1 ) ) e. RR )
127 122 126 7 8 9 15 fourierdlem10
 |-  ( ph -> ( ( Q ` U ) <_ A /\ B <_ ( Q ` ( U + 1 ) ) ) )
128 127 simpld
 |-  ( ph -> ( Q ` U ) <_ A )
129 122 7 2 128 leadd2dd
 |-  ( ph -> ( X + ( Q ` U ) ) <_ ( X + A ) )
130 119 129 eqbrtrd
 |-  ( ph -> ( V ` U ) <_ ( X + A ) )
131 127 simprd
 |-  ( ph -> B <_ ( Q ` ( U + 1 ) ) )
132 8 126 2 131 leadd2dd
 |-  ( ph -> ( X + B ) <_ ( X + ( Q ` ( U + 1 ) ) ) )
133 123 simprd
 |-  ( ph -> ( V ` ( U + 1 ) ) = ( X + ( Q ` ( U + 1 ) ) ) )
134 132 133 breqtrrd
 |-  ( ph -> ( X + B ) <_ ( V ` ( U + 1 ) ) )
135 ioossioo
 |-  ( ( ( ( V ` U ) e. RR* /\ ( V ` ( U + 1 ) ) e. RR* ) /\ ( ( V ` U ) <_ ( X + A ) /\ ( X + B ) <_ ( V ` ( U + 1 ) ) ) ) -> ( ( X + A ) (,) ( X + B ) ) C_ ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) )
136 110 114 130 134 135 syl22anc
 |-  ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) )
137 136 resabs1d
 |-  ( ph -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) = ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) )
138 137 eqcomd
 |-  ( ph -> ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) = ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) )
139 14 ancli
 |-  ( ph -> ( ph /\ U e. ( 0 ..^ M ) ) )
140 eleq1
 |-  ( i = U -> ( i e. ( 0 ..^ M ) <-> U e. ( 0 ..^ M ) ) )
141 140 anbi2d
 |-  ( i = U -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ U e. ( 0 ..^ M ) ) ) )
142 fveq2
 |-  ( i = U -> ( V ` i ) = ( V ` U ) )
143 oveq1
 |-  ( i = U -> ( i + 1 ) = ( U + 1 ) )
144 143 fveq2d
 |-  ( i = U -> ( V ` ( i + 1 ) ) = ( V ` ( U + 1 ) ) )
145 142 144 oveq12d
 |-  ( i = U -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) = ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) )
146 145 reseq2d
 |-  ( i = U -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) )
147 145 oveq1d
 |-  ( i = U -> ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) = ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) )
148 146 147 eleq12d
 |-  ( i = U -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) <-> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) )
149 141 148 imbi12d
 |-  ( i = U -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) ) <-> ( ( ph /\ U e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) ) )
150 149 6 vtoclg
 |-  ( U e. ( 0 ..^ M ) -> ( ( ph /\ U e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) )
151 14 139 150 sylc
 |-  ( ph -> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) )
152 rescncf
 |-  ( ( ( X + A ) (,) ( X + B ) ) C_ ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) )
153 136 151 152 sylc
 |-  ( ph -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) )
154 138 153 eqeltrd
 |-  ( ph -> ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) )
155 100 154 eqeltrd
 |-  ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) )
156 1 2 7 8 88 155 12 16 fourierdlem59
 |-  ( ph -> ( RR _D H ) e. ( ( A (,) B ) -cn-> RR ) )
157 87 156 sseldd
 |-  ( ph -> ( RR _D H ) e. ( ( A (,) B ) -cn-> CC ) )
158 iooretop
 |-  ( A (,) B ) e. ( topGen ` ran (,) )
159 158 a1i
 |-  ( ph -> ( A (,) B ) e. ( topGen ` ran (,) ) )
160 17 10 88 159 fourierdlem58
 |-  ( ph -> ( RR _D K ) e. ( ( A (,) B ) -cn-> RR ) )
161 87 160 sseldd
 |-  ( ph -> ( RR _D K ) e. ( ( A (,) B ) -cn-> CC ) )
162 66 76 81 157 161 dvmulcncf
 |-  ( ph -> ( RR _D ( H oF x. K ) ) e. ( ( A (,) B ) -cn-> CC ) )
163 64 162 eqeltrd
 |-  ( ph -> ( RR _D O ) e. ( ( A (,) B ) -cn-> CC ) )